Edexcel C3 (Core Mathematics 3)

Question 2
View details
2. (a) Prove that, for \(\cos x \neq 0\), $$\sin 2 x - \tan x \equiv \tan x \cos 2 x .$$ (b) Hence, or otherwise, solve the equation $$\sin 2 x - \tan x = 2 \cos 2 x ,$$ for \(x\) in the interval \(0 \leq x \leq 180 ^ { \circ }\).
Question 3
View details
3. $$f ( x ) = x ^ { 2 } + 5 x - 2 \sec x , \quad x \in \mathbb { R } , \quad - \frac { \pi } { 2 } < x < \frac { \pi } { 2 } .$$
  1. Show that the equation \(\mathrm { f } ( x ) = 0\) has a root in the interval [1,1.5]. A more accurate estimate of this root is to be found using iterations of the form $$x _ { n + 1 } = \arccos \mathrm { g } \left( x _ { n } \right) .$$
  2. Find a suitable form for \(\mathrm { g } ( x )\) and use this formula with \(x _ { 0 } = 1.25\) to find \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\). Give the value of \(x _ { 4 }\) to 3 decimal places. The curve \(y = \mathrm { f } ( x )\) has a stationary point at \(P\).
  3. Show that the \(x\)-coordinate of \(P\) is 1.0535 correct to 5 significant figures.
Question 4
View details
4. (a) Differentiate each of the following with respect to \(x\) and simplify your answers.
  1. \(\sqrt { 1 - \cos x }\)
  2. \(x ^ { 3 } \ln x\)
    (b) Given that $$x = \frac { y + 1 } { 3 - 2 y } ,$$ find and simplify an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(y\).
Question 5
View details
5. (a) Express \(\sqrt { 3 } \sin \theta + \cos \theta\) in the form \(R \sin ( \theta + \alpha )\) where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\).
(b) State the maximum value of \(\sqrt { 3 } \sin \theta + \cos \theta\) and the smallest positive value of \(\theta\) for which this maximum value occurs.
(c) Solve the equation $$\sqrt { 3 } \sin \theta + \cos \theta + \sqrt { 3 } = 0 ,$$ for \(\theta\) in the interval \(- \pi \leq \theta \leq \pi\), giving your answers in terms of \(\pi\).
Question 6
View details
6. The function f is defined by $$\mathrm { f } ( x ) \equiv 3 - x ^ { 2 } , \quad x \in \mathbb { R } , \quad x \geq 0 .$$
  1. State the range of f.
  2. Sketch the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\) on the same diagram.
  3. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\) and state its domain. The function g is defined by $$\mathrm { g } ( x ) \equiv \frac { 8 } { 3 - x } , \quad x \in \mathbb { R } , \quad x \neq 3 .$$
  4. Evaluate \(\mathrm { fg } ( - 3 )\).
  5. Solve the equation $$\mathrm { f } ^ { - 1 } ( x ) = \mathrm { g } ( x ) .$$
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{795e472b-ad43-432a-a7cf-457b0f5e66f5-4_499_1107_242_415} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a graph of the temperature of a room, \(T ^ { \circ } \mathrm { C }\), at time \(t\) minutes.
The temperature is controlled by a thermostat such that when the temperature falls to \(12 ^ { \circ } \mathrm { C }\), a heater is turned on until the temperature reaches \(18 ^ { \circ } \mathrm { C }\). The room then cools until the temperature again falls to \(12 ^ { \circ } \mathrm { C }\). For \(t\) in the interval \(10 \leq t \leq 60\), \(T\) is given by $$T = 5 + A \mathrm { e } ^ { - k t } ,$$ where \(A\) and \(k\) are constants.
Given that \(T = 18\) when \(t = 10\) and that \(T = 12\) when \(t = 60\),
  1. show that \(k = 0.0124\) to 3 significant figures and find the value of \(A\),
  2. find the rate at which the temperature of the room is decreasing when \(t = 20\). The temperature again reaches \(18 ^ { \circ } \mathrm { C }\) when \(t = 70\) and the graph for \(70 \leq t \leq 120\) is a translation of the graph for \(10 \leq t \leq 60\).
  3. Find the value of the constant \(B\) such that for \(70 \leq t \leq 120\) $$T = 5 + B \mathrm { e } ^ { - k t } .$$