Edexcel C3 (Core Mathematics 3)

Question 1
View details
  1. The function f is defined by
$$\mathrm { f } ( x ) \equiv 2 + \ln ( 3 x - 2 ) , \quad x \in \mathbb { R } , \quad x > \frac { 2 } { 3 } .$$
  1. Find the exact value of \(\mathrm { ff } ( 1 )\).
  2. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
Question 2
View details
2. Find, to 2 decimal places, the solutions of the equation $$3 \cot ^ { 2 } x - 4 \operatorname { cosec } x + \operatorname { cosec } ^ { 2 } x = 0$$ in the interval \(0 \leq x \leq 2 \pi\).
Question 3
View details
3. (a) Given that \(y = \ln x\), find expressions in terms of \(y\) for
  1. \(\quad \log _ { 2 } x\),
  2. \(\ln \frac { x ^ { 2 } } { \mathrm { e } }\).
    (b) Hence, or otherwise, solve the equation $$\log _ { 2 } x = 4 - \ln \frac { x ^ { 2 } } { \mathrm { e } } ,$$ giving your answer to 2 decimal places.
Question 4
View details
4. (a) Use the identities for ( \(\sin A + \sin B\) ) and ( \(\cos A + \cos B\) ) to prove that $$\frac { \sin 2 x + \sin 2 y } { \cos 2 x + \cos 2 y } \equiv \tan ( x + y ) .$$ (b) Hence, show that $$\tan 52.5 ^ { \circ } = \sqrt { 6 } - \sqrt { 3 } - \sqrt { 2 } + 2 .$$
Question 5
View details
5. $$f ( x ) = 3 - \frac { x - 1 } { x - 3 } + \frac { x + 11 } { 2 x ^ { 2 } - 5 x - 3 } , \quad x \in \mathbb { R } , \quad x < - 1$$
  1. Show that $$f ( x ) = \frac { 4 x - 1 } { 2 x + 1 }$$
  2. Find an equation for the tangent to the curve \(y = \mathrm { f } ( x )\) at the point where \(x = - 2\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
Question 6
View details
6. A curve has the equation \(y = \mathrm { e } ^ { 3 x } \cos 2 x\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \mathrm { e } ^ { 3 x } ( 5 \cos 2 x - 12 \sin 2 x )\). The curve has a stationary point in the interval \([ 0,1 ]\).
  3. Find the \(x\)-coordinate of the stationary point to 3 significant figures.
  4. Determine whether the stationary point is a maximum or minimum point and justify your answer.
Question 7
View details
7. (a) Sketch on the same diagram the graphs of \(y = 4 a ^ { 2 } - x ^ { 2 }\) and \(y = | 2 x - a |\), where \(a\) is a positive constant. Show, in terms of \(a\), the coordinates of any points where each graph meets the coordinate axes.
(b) Find the exact solutions of the equation $$4 - x ^ { 2 } = | 2 x - 1 |$$
Question 8
View details
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d17a1b86-d758-4470-834a-b32a41f90c89-4_478_937_251_450} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows the curve with equation \(y = 2 x - 3 \ln ( 2 x + 5 )\) and the normal to the curve at the point \(P ( - 2 , - 4 )\).
  1. Find an equation for the normal to the curve at \(P\). The normal to the curve at \(P\) intersects the curve again at the point \(Q\) with \(x\)-coordinate \(q\).
  2. Show that \(1 < q < 2\).
  3. Show that \(q\) is a solution of the equation $$x = \frac { 12 } { 7 } \ln ( 2 x + 5 ) - 2 .$$
  4. Use the iterative formula $$x _ { n + 1 } = \frac { 12 } { 7 } \ln \left( 2 x _ { n } + 5 \right) - 2 ,$$ with \(x _ { 0 } = 1.5\), to find the value of \(q\) to 3 significant figures and justify the accuracy of your answer.