OCR MEI C3 (Core Mathematics 3) 2009 January

Question 1
View details
1 Solve the inequality \(| x - 1 | < 3\).
Question 2
View details
2
  1. Differentiate \(x \cos 2 x\) with respect to \(x\).
  2. Integrate \(x \cos 2 x\) with respect to \(x\).
Question 3
View details
3 Given that \(\mathrm { f } ( x ) = \frac { 1 } { 2 } \ln ( x - 1 )\) and \(\mathrm { g } ( x ) = 1 + \mathrm { e } ^ { 2 x }\), show that \(\mathrm { g } ( x )\) is the inverse of \(\mathrm { f } ( x )\).
Question 4
View details
4 Find the exact value of \(\int _ { 0 } ^ { 2 } \sqrt { 1 + 4 x } \mathrm {~d} x\), showing your working.
Question 5
View details
5
  1. State the period of the function \(\mathrm { f } ( x ) = 1 + \cos 2 x\), where \(x\) is in degrees.
  2. State a sequence of two geometrical transformations which maps the curve \(y = \cos x\) onto the curve \(y = \mathrm { f } ( x )\).
  3. Sketch the graph of \(y = \mathrm { f } ( x )\) for \(- 180 ^ { \circ } < x < 180 ^ { \circ }\).
Question 6
View details
6
  1. Disprove the following statement. $$\text { 'If } p > q \text {, then } \frac { 1 } { p } < \frac { 1 } { q } \text {. }$$
  2. State a condition on \(p\) and \(q\) so that the statement is true.
Question 7
View details
7 The variables \(x\) and \(y\) satisfy the equation \(x ^ { \frac { 2 } { 3 } } + y ^ { \frac { 2 } { 3 } } = 5\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \left( \frac { y } { x } \right) ^ { \frac { 1 } { 3 } }\). Both \(x\) and \(y\) are functions of \(t\).
  2. Find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} t }\) when \(x = 1 , y = 8\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 6\). Section B (36 marks)
Question 8
View details
8 Fig. 8 shows the curve \(y = x ^ { 2 } - \frac { 1 } { 8 } \ln x\). P is the point on this curve with \(x\)-coordinate 1 , and R is the point \(\left( 0 , - \frac { 7 } { 8 } \right)\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{56672660-b7dc-4e10-8039-1c041e75b598-3_1022_995_479_575} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. Find the gradient of PR.
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\). Hence show that PR is a tangent to the curve.
  3. Find the exact coordinates of the turning point Q .
  4. Differentiate \(x \ln x - x\). Hence, or otherwise, show that the area of the region enclosed by the curve \(y = x ^ { 2 } - \frac { 1 } { 8 } \ln x\), the \(x\)-axis and the lines \(x = 1\) and \(x = 2\) is \(\frac { 59 } { 24 } - \frac { 1 } { 4 } \ln 2\).
Question 9
View details
9 Fig. 9 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { 1 } { \sqrt { 2 x - x ^ { 2 } } }\).
The curve has asymptotes \(x = 0\) and \(x = a\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{56672660-b7dc-4e10-8039-1c041e75b598-4_655_800_431_669} \captionsetup{labelformat=empty} \caption{Fig. 9}
\end{figure}
  1. Find \(a\). Hence write down the domain of the function.
  2. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { x - 1 } { \left( 2 x - x ^ { 2 } \right) ^ { \frac { 3 } { 2 } } }\). Hence find the coordinates of the turning point of the curve, and write down the range of the function. The function \(\mathrm { g } ( x )\) is defined by \(\mathrm { g } ( x ) = \frac { 1 } { \sqrt { 1 - x ^ { 2 } } }\).
  3. (A) Show algebraically that \(\mathrm { g } ( x )\) is an even function.
    (B) Show that \(\mathrm { g } ( x - 1 ) = \mathrm { f } ( x )\).
    (C) Hence prove that the curve \(y = \mathrm { f } ( x )\) is symmetrical, and state its line of symmetry.