OCR MEI C3 (Core Mathematics 3) 2008 January

Question 1
View details
1 Differentiate \(\sqrt [ 3 ] { 1 + 6 x ^ { 2 } }\).
Question 2
View details
2 The functions \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined for all real numbers \(x\) by $$\mathrm { f } ( x ) = x ^ { 2 } , \quad \mathrm {~g} ( x ) = x - 2$$
  1. Find the composite functions \(\mathrm { fg } ( x )\) and \(\mathrm { gf } ( x )\).
  2. Sketch the curves \(y = \mathrm { f } ( x ) , y = \mathrm { fg } ( x )\) and \(y = \mathrm { gf } ( x )\), indicating clearly which is which.
Question 3
View details
3 The profit \(\pounds P\) made by a company in its \(n\)th year is modelled by the exponential function $$P = A \mathrm { e } ^ { b n }$$ In the first year (when \(n = 1\) ), the profit was \(\pounds 10000\). In the second year, the profit was \(\pounds 16000\).
  1. Show that \(\mathrm { e } ^ { b } = 1.6\), and find \(b\) and \(A\).
  2. What does this model predict the profit to be in the 20th year?
Question 4
View details
4 When the gas in a balloon is kept at a constant temperature, the pressure \(P\) in atmospheres and the volume \(V \mathrm {~m} ^ { 3 }\) are related by the equation $$P = \frac { k } { V }$$ where \(k\) is a constant. [This is known as Boyle's Law.]
When the volume is \(100 \mathrm {~m} ^ { 3 }\), the pressure is 5 atmospheres, and the volume is increasing at a rate of \(10 \mathrm {~m} ^ { 3 }\) per second.
  1. Show that \(k = 500\).
  2. Find \(\frac { \mathrm { d } P } { \mathrm {~d} V }\) in terms of \(V\).
  3. Find the rate at which the pressure is decreasing when \(V = 100\).
Question 5
View details
5
  1. Verify the following statement: $$\text { ' } 2 ^ { p } - 1 \text { is a prime number for all prime numbers } p \text { less than } 11 \text { '. }$$
  2. Calculate \(23 \times 89\), and hence disprove this statement: $$\text { ' } 2 ^ { p } - 1 \text { is a prime number for all prime numbers } p ^ { \prime } \text {. }$$
Question 6
View details
6 Fig. 6 shows the curve \(\mathrm { e } ^ { 2 y } = x ^ { 2 } + y\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a66c2da5-46b4-4467-933e-179be04b03b1-3_739_1339_349_404} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 x } { 2 \mathrm { e } ^ { 2 y } - 1 }\).
  2. Hence find to 3 significant figures the coordinates of the point P , shown in Fig. 6, where the curve has infinite gradient. Section B (36 marks)
Question 7
View details
7 A curve is defined by the equation \(y = 2 x \ln ( 1 + x )\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence verify that the origin is a stationary point of the curve.
  2. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\), and use this to verify that the origin is a minimum point.
  3. Using the substitution \(u = 1 + x\), show that \(\int \frac { x ^ { 2 } } { 1 + x } \mathrm {~d} x = \int \left( u - 2 + \frac { 1 } { u } \right) \mathrm { d } u\). Hence evaluate \(\int _ { 0 } ^ { 1 } \frac { x ^ { 2 } } { 1 + x } \mathrm {~d} x\), giving your answer in an exact form.
  4. Using integration by parts and your answer to part (iii), evaluate \(\int _ { 0 } ^ { 1 } 2 x \ln ( 1 + x ) \mathrm { d } x\).
Question 8
View details
8 Fig. 8 shows the curve \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = 1 + \sin 2 x\) for \(- \frac { 1 } { 4 } \pi \leqslant x \leqslant \frac { 1 } { 4 } \pi\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a66c2da5-46b4-4467-933e-179be04b03b1-4_581_816_354_662} \captionsetup{labelformat=empty} \caption{Fig. 8}
\end{figure}
  1. State a sequence of two transformations that would map part of the curve \(y = \sin x\) onto the curve \(y = \mathrm { f } ( x )\).
  2. Find the area of the region enclosed by the curve \(y = \mathrm { f } ( x )\), the \(x\)-axis and the line \(x = \frac { 1 } { 4 } \pi\).
  3. Find the gradient of the curve \(y = \mathrm { f } ( x )\) at the point \(( 0,1 )\). Hence write down the gradient of the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) at the point \(( 1,0 )\).
  4. State the domain of \(\mathrm { f } ^ { - 1 } ( x )\). Add a sketch of \(y = \mathrm { f } ^ { - 1 } ( x )\) to a copy of Fig. 8.
  5. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).