OCR C3 (Core Mathematics 3) 2013 June

Question 1
View details
1 Find
  1. \(\quad \int ( 4 - 3 x ) ^ { 7 } \mathrm {~d} x\),
  2. \(\quad \int ( 4 - 3 x ) ^ { - 1 } \mathrm {~d} x\).
Question 2
View details
2 Using an appropriate identity in each case, find the possible values of
  1. \(\sin \alpha\) given that \(4 \cos 2 \alpha = \sin ^ { 2 } \alpha\),
  2. \(\sec \beta\) given that \(2 \tan ^ { 2 } \beta = 3 + 9 \sec \beta\).
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{71e01d8f-d0ed-4f17-b7cd-6f5a93bbe329-2_435_472_932_794} The diagram shows a container in the form of a right circular cone. The angle between the axis and the slant height is \(\alpha\), where \(\alpha = \tan ^ { - 1 } \left( \frac { 1 } { 2 } \right)\). Initially the container is empty, and then liquid is added at the rate of \(14 \mathrm {~cm} ^ { 3 }\) per minute. The depth of liquid in the container at time \(t\) minutes is \(x \mathrm {~cm}\).
  1. Show that the volume, \(V \mathrm {~cm} ^ { 3 }\), of liquid in the container when the depth is \(x \mathrm {~cm}\) is given by $$V = \frac { 1 } { 12 } \pi x ^ { 3 } .$$ [The volume of a cone is \(\frac { 1 } { 3 } \pi r ^ { 2 } h\).]
  2. Find the rate at which the depth of the liquid is increasing at the instant when the depth is 8 cm . Give your answer in cm per minute correct to 2 decimal places.
Question 4
View details
4 Find the exact value of the gradient of the curve $$y = \sqrt { 4 x - 7 } + \frac { 4 x } { 2 x + 1 }$$ at the point for which \(x = 4\).
Question 5
View details
5
  1. Give full details of a sequence of two transformations needed to transform the graph of \(y = | x |\) to the graph of \(y = | 2 ( x + 3 ) |\).
  2. Solve the inequality \(| x | > | 2 ( x + 3 ) |\), showing all your working.
Question 6
View details
6 The value of \(\int _ { 0 } ^ { 8 } \ln \left( 3 + x ^ { 2 } \right) \mathrm { d } x\) obtained by using Simpson's rule with four strips is denoted by \(A\).
  1. Find the value of \(A\) correct to 3 significant figures.
  2. Explain why an approximate value of \(\int _ { 0 } ^ { 8 } \ln \left( 9 + 6 x ^ { 2 } + x ^ { 4 } \right) \mathrm { d } x\) is \(2 A\).
  3. Explain why an approximate value of \(\int _ { 0 } ^ { 8 } \ln \left( 3 \mathrm { e } + \mathrm { e } x ^ { 2 } \right) \mathrm { d } x\) is \(A + 8\).
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{71e01d8f-d0ed-4f17-b7cd-6f5a93bbe329-3_428_751_703_641} The diagram shows the curve \(y = \mathrm { f } ( x )\), where f is the function defined for all real values of \(x\) by $$\mathrm { f } ( x ) = 3 + 4 \mathrm { e } ^ { - x }$$
  1. State the range of f .
  2. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\), and state the domain and range of \(\mathrm { f } ^ { - 1 }\).
  3. The straight line \(y = x\) meets the curve \(y = \mathrm { f } ( x )\) at the point \(P\). By using an iterative process based on the equation \(x = \mathrm { f } ( x )\), with a starting value of 3 , find the coordinates of the point \(P\). Show all your working and give each coordinate correct to 3 decimal places.
  4. How is the point \(P\) related to the curves \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\) ?
Question 8
View details
8
  1. Express \(4 \cos \theta - 2 \sin \theta\) in the form \(R \cos ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\).
  2. Hence
    (a) solve the equation \(4 \cos \theta - 2 \sin \theta = 3\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\),
    (b) determine the greatest and least values of $$25 - ( 4 \cos \theta - 2 \sin \theta ) ^ { 2 }$$ as \(\theta\) varies, and, in each case, find the smallest positive value of \(\theta\) for which that value occurs.
Question 9
View details
9
\includegraphics[max width=\textwidth, alt={}, center]{71e01d8f-d0ed-4f17-b7cd-6f5a93bbe329-4_661_915_269_557} The diagram shows the curve $$y = \mathrm { e } ^ { 2 x } - 18 x + 15 .$$ The curve crosses the \(y\)-axis at \(P\) and the minimum point is \(Q\). The shaded region is bounded by the curve and the line \(P Q\).
  1. Show that the \(x\)-coordinate of \(Q\) is \(\ln 3\).
  2. Find the exact area of the shaded region.