OCR C3 (Core Mathematics 3) 2008 January

Question 1
View details
1 Functions f and g are defined for all real values of \(x\) by $$\mathrm { f } ( x ) = x ^ { 3 } + 4 \quad \text { and } \quad \mathrm { g } ( x ) = 2 x - 5$$ Evaluate
  1. \(f g ( 1 )\),
  2. \(\mathrm { f } ^ { - 1 } ( 12 )\).
Question 2
View details
2 The sequence defined by $$x _ { 1 } = 3 , \quad x _ { n + 1 } = \sqrt [ 3 ] { 31 - \frac { 5 } { 2 } x _ { n } }$$ converges to the number \(\alpha\).
  1. Find the value of \(\alpha\) correct to 3 decimal places, showing the result of each iteration.
  2. Find an equation of the form \(a x ^ { 3 } + b x + c = 0\), where \(a\), \(b\) and \(c\) are integers, which has \(\alpha\) as a root.
Question 3
View details
3
  1. Solve, for \(0 ^ { \circ } < \alpha < 180 ^ { \circ }\), the equation \(\sec \frac { 1 } { 2 } \alpha = 4\).
  2. Solve, for \(0 ^ { \circ } < \beta < 180 ^ { \circ }\), the equation \(\tan \beta = 7 \cot \beta\).
Question 4
View details
4 Earth is being added to a pile so that, when the height of the pile is \(h\) metres, its volume is \(V\) cubic metres, where $$V = \left( h ^ { 6 } + 16 \right) ^ { \frac { 1 } { 2 } } - 4$$
  1. Find the value of \(\frac { \mathrm { d } V } { \mathrm {~d} h }\) when \(h = 2\).
  2. The volume of the pile is increasing at a constant rate of 8 cubic metres per hour. Find the rate, in metres per hour, at which the height of the pile is increasing at the instant when \(h = 2\). Give your answer correct to 2 significant figures.
Question 5
View details
5
  1. Find \(\int ( 3 x + 7 ) ^ { 9 } \mathrm {~d} x\).

  2. \includegraphics[max width=\textwidth, alt={}, center]{32f90420-e1eb-47ab-b588-e3806b64813f-3_537_881_402_671} The diagram shows the curve \(y = \frac { 1 } { 2 \sqrt { x } }\). The shaded region is bounded by the curve and the lines \(x = 3 , x = 6\) and \(y = 0\). The shaded region is rotated completely about the \(x\)-axis. Find the exact volume of the solid produced, simplifying your answer.
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{32f90420-e1eb-47ab-b588-e3806b64813f-3_641_837_1306_657} The diagram shows the graph of \(y = - \sin ^ { - 1 } ( x - 1 )\).
  1. Give details of the pair of geometrical transformations which transforms the graph of \(y = - \sin ^ { - 1 } ( x - 1 )\) to the graph of \(y = \sin ^ { - 1 } x\).
  2. Sketch the graph of \(y = \left| - \sin ^ { - 1 } ( x - 1 ) \right|\).
  3. Find the exact solutions of the equation \(\left| - \sin ^ { - 1 } ( x - 1 ) \right| = \frac { 1 } { 3 } \pi\).
Question 7
View details
7 A curve has equation \(y = \frac { x \mathrm { e } ^ { 2 x } } { x + k }\), where \(k\) is a non-zero constant.
  1. Differentiate \(x \mathrm { e } ^ { 2 x }\), and show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { \mathrm { e } ^ { 2 x } \left( 2 x ^ { 2 } + 2 k x + k \right) } { ( x + k ) ^ { 2 } }\).
  2. Given that the curve has exactly one stationary point, find the value of \(k\), and determine the exact coordinates of the stationary point.
Question 8
View details
8 The definite integral \(I\) is defined by $$I = \int _ { 0 } ^ { 6 } 2 ^ { x } \mathrm {~d} x$$
  1. Use Simpson's rule with 6 strips to find an approximate value of \(I\).
  2. By first writing \(2 ^ { x }\) in the form \(\mathrm { e } ^ { k x }\), where the constant \(k\) is to be determined, find the exact value of \(I\).
  3. Use the answers to parts (i) and (ii) to deduce that \(\ln 2 \approx \frac { 9 } { 13 }\).
Question 9
View details
9
  1. Use the identity for \(\cos ( A + B )\) to prove that $$4 \cos \left( \theta + 60 ^ { \circ } \right) \cos \left( \theta + 30 ^ { \circ } \right) \equiv \sqrt { 3 } - 2 \sin 2 \theta .$$
  2. Hence find the exact value of \(4 \cos 82.5 ^ { \circ } \cos 52.5 ^ { \circ }\).
  3. Solve, for \(0 ^ { \circ } < \theta < 90 ^ { \circ }\), the equation \(4 \cos \left( \theta + 60 ^ { \circ } \right) \cos \left( \theta + 30 ^ { \circ } \right) = 1\).
  4. Given that there are no values of \(\theta\) which satisfy the equation $$4 \cos \left( \theta + 60 ^ { \circ } \right) \cos \left( \theta + 30 ^ { \circ } \right) = k ,$$ determine the set of values of the constant \(k\). \footnotetext{Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. }