OCR MEI C2 (Core Mathematics 2)

Question 1
View details
1 Show that the equation \(\sin ^ { 2 } x = 3 \cos x - 2\) can be expressed as a quadratic equation in \(\cos x\) and hence solve the equation for values of \(x\) between 0 and \(2 \pi\).
Question 2
View details
2 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4dcf71fc-2585-4247-a21d-8b14f11ce0d0-1_239_1478_439_335} \captionsetup{labelformat=empty} \caption{Fig. 9.1}
\end{figure}
  1. Jean is designing a model aeroplane. Fig. 9.1 shows her first sketch of the wing's cross-section. Calculate angle A and the area of the cross-section.
  2. Jean then modifies her design for the wing. Fig. 9.2 shows the new cross-section, with 1 unit for each of \(x\) and \(y\) representing one centimetre. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{4dcf71fc-2585-4247-a21d-8b14f11ce0d0-1_415_1662_1081_240} \captionsetup{labelformat=empty} \caption{Fig. 9.2}
    \end{figure} Here are some of the coordinates that Jean used to draw the new cross-section.
    Upper surfaceLower surface
    \(x\)\(y\)\(x\)\(y\)
    0000
    41.454- 0.85
    81.568- 0.76
    121.2712- 0.55
    161.0416- 0.30
    200200
    Use the trapezium rule with trapezia of width 4 cm to calculate an estimate of the area of this cross-section.
Question 3 3 marks
View details
3 Simplify \(\frac { \sqrt { 1 - \cos ^ { 2 } \theta } } { \tan \theta }\), where \(\theta\) is an acute angle.
[0pt] [3]
Question 4 3 marks
View details
4 Solve the equation \(\tan 2 \theta = 3\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
[0pt] [3]
Question 5
View details
5 Solve the equation \(\sin 2 \theta = 0.7\) for values of \(\theta\) between 0 and \(2 \pi\), giving your answers in radians correct to 3 significant figures.
Question 6
View details
6 Solve the equation \(\tan \theta = 2 \sin \theta\) for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Question 7
View details
7 Showing your method clearly, solve the equation \(4 \sin ^ { 2 } \theta = 3 + \cos ^ { 2 } \theta\), for values of \(\theta\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\).
Question 8
View details
8 Show that the equation \(4 \cos ^ { 2 } \theta = 4 - \sin \theta\) may be written in the form $$4 \sin ^ { 2 } \theta - \sin \theta = 0$$ Hence solve the equation \(4 \cos ^ { 2 } \theta = 4 - \sin \theta\) for \(0 ^ { \circ } \leqslant \theta \leqslant 180 ^ { \circ }\).
Question 9
View details
9 Showing your method, solve the equation \(2 \sin ^ { 2 } \theta = \cos \theta + 2\) for values of \(\theta\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\).
Question 10 4 marks
View details
10
  1. Show that the equation \(2 \cos ^ { 2 } \theta + 7 \sin \theta = 5\) may be written in the form $$2 \sin ^ { 2 } \theta - 7 \sin \theta + 3 = 0$$
  2. By factorising this quadratic equation, solve the equation for values of \(\theta\) between \(0 ^ { \circ }\) and \(180 ^ { \circ }\). [4]