OCR MEI C2 (Core Mathematics 2)

Question 1
View details
1 The equation of a cubic curve is \(y = 2 x ^ { 3 } - 9 x ^ { 2 } + 12 x - 2\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and show that the tangent to the curve when \(x = 3\) passes through the point \(( - 1 , - 41 )\).
  2. Use calculus to find the coordinates of the turning points of the curve. You need not distinguish between the maximum and minimum.
  3. Sketch the curve, given that the only real root of \(2 x ^ { 3 } - 9 x ^ { 2 } + 12 x - 2 = 0\) is \(x = 0.2\) correct to 1 decimal place.
Question 2
View details
2 A cubic curve has equation \(y = x ^ { 3 } - 3 x ^ { 2 } + 1\).
  1. Use calculus to find the coordinates of the turning points on this curve. Determine the nature of these turning points.
  2. Show that the tangent to the curve at the point where \(x = - 1\) has gradient 9 . Find the coordinates of the other point, P , on the curve at which the tangent has gradient 9 and find the equation of the normal to the curve at P . Show that the area of the triangle bounded by the normal at P and the \(x\) - and \(y\)-axes is 8 square units.
Question 3
View details
3 A curve has equation \(y = x + \frac { 1 } { x }\).
Use calculus to show that the curve has a turning point at \(x = 1\).
Show also that this point is a minimum.
Question 4
View details
4 The equation of a curve is \(y = 9 x ^ { 2 } - x ^ { 4 }\).
  1. Show that the curve meets the \(x\)-axis at the origin and at \(x = \pm a\), stating the value of \(a\).
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\). Hence show that the origin is a minimum point on the curve. Find the \(x\)-coordinates of the maximum points.
  3. Use calculus to find the area of the region bounded by the curve and the \(x\)-axis between \(x = 0\) and \(x = a\), using the value you found for \(a\) in part (i).
Question 5
View details
5 Differentiate \(4 x ^ { 2 } + \frac { 1 } { x }\) and hence find the \(x\)-coordinate of the stationary point of the curve \(y = 4 x ^ { 2 } + \frac { 1 } { x }\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bba82ee6-90b2-4f03-9bb9-0371ff711a09-3_639_1027_302_542} \captionsetup{labelformat=empty} \caption{Fig. 11}
\end{figure} The equation of the curve shown in Fig. 11 is \(y = x ^ { 3 } - 6 x + 2\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  2. Find, in exact form, the range of values of \(x\) for which \(x ^ { 3 } - 6 x + 2\) is a decreasing function.
  3. Find the equation of the tangent to the curve at the point \(( - 1,7 )\). Find also the coordinates of the point where this tangent crosses the curve again.