OCR MEI C2 (Core Mathematics 2) 2009 January

Question 1 4 marks
View details
1 Find \(\int \left( 20 x ^ { 4 } + 6 x ^ { - \frac { 3 } { 2 } } \right) \mathrm { d } x\).
[0pt] [4]
Question 2
View details
2 Fig. 2 shows the coordinates at certain points on a curve. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{838d6b15-69a9-4e67-bc36-5bf60254a767-2_645_1146_589_497} \captionsetup{labelformat=empty} \caption{Fig. 2}
\end{figure} Use the trapezium rule with 6 strips to calculate an estimate of the area of the region bounded by this curve and the axes.
Question 3
View details
3 Find \(\sum _ { k = 1 } ^ { 5 } \frac { 1 } { 1 + k }\).
Question 4
View details
4 Solve the equation \(\sin 2 x = - 0.5\) for \(0 ^ { \circ } < x < 180 ^ { \circ }\).
Question 5
View details
5 Answer this question on the insert provided. Fig. 5 shows the graph of \(y = \mathrm { f } ( x )\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{838d6b15-69a9-4e67-bc36-5bf60254a767-3_979_1077_422_536} \captionsetup{labelformat=empty} \caption{Fig. 5}
\end{figure} On the insert, draw the graph of
  1. \(y = \mathrm { f } ( x - 2 )\),
  2. \(y = 3 \mathrm { f } ( x )\).
Question 6
View details
6 An arithmetic progression has first term 7 and third term 12.
  1. Find the 20th term of this progression.
  2. Find the sum of the 21st to the 50th terms inclusive of this progression.
Question 7
View details
7 Differentiate \(4 x ^ { 2 } + \frac { 1 } { x }\) and hence find the \(x\)-coordinate of the stationary point of the curve \(y = 4 x ^ { 2 } + \frac { 1 } { x }\).
Question 8
View details
8 The terms of a sequence are given by $$\begin{aligned} u _ { 1 } & = 192
u _ { n + 1 } & = - \frac { 1 } { 2 } u _ { n } \end{aligned}$$
  1. Find the third term of this sequence and state what type of sequence it is.
  2. Show that the series \(u _ { 1 } + u _ { 2 } + u _ { 3 } + \ldots\) converges and find its sum to infinity.
Question 9
View details
9
  1. State the value of \(\log _ { a } a\).
  2. Express each of the following in terms of \(\log _ { a } x\).
    (A) \(\log _ { a } x ^ { 3 } + \log _ { a } \sqrt { x }\)
    (B) \(\log _ { a } \frac { 1 } { x }\) Section B (36 marks)
Question 10
View details
10 Fig. 10 shows a sketch of the graph of \(y = 7 x - x ^ { 2 } - 6\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{838d6b15-69a9-4e67-bc36-5bf60254a767-4_609_908_1338_621} \captionsetup{labelformat=empty} \caption{Fig. 10}
\end{figure}
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence find the equation of the tangent to the curve at the point on the curve where \(x = 2\). Show that this tangent crosses the \(x\)-axis where \(x = \frac { 2 } { 3 }\).
  2. Show that the curve crosses the \(x\)-axis where \(x = 1\) and find the \(x\)-coordinate of the other point of intersection of the curve with the \(x\)-axis.
  3. Find \(\int _ { 1 } ^ { 2 } \left( 7 x - x ^ { 2 } - 6 \right) \mathrm { d } x\). Hence find the area of the region bounded by the curve, the tangent and the \(x\)-axis, shown shaded on Fig. 10.
Question 11
View details
11
  1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{838d6b15-69a9-4e67-bc36-5bf60254a767-5_469_878_274_671} \captionsetup{labelformat=empty} \caption{Fig. 11.1}
    \end{figure} Fig. 11.1 shows the surface ABCD of a TV presenter's desk. AB and CD are arcs of circles with centre O and sector angle 2.5 radians. \(\mathrm { OC } = 60 \mathrm {~cm}\) and \(\mathrm { OB } = 140 \mathrm {~cm}\).
    (A) Calculate the length of the arc CD.
    (B) Calculate the area of the surface ABCD of the desk.
  2. The TV presenter is at point P , shown in Fig. 11.2. A TV camera can move along the track EF , which is of length 3.5 m . \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{838d6b15-69a9-4e67-bc36-5bf60254a767-5_378_877_1334_675} \captionsetup{labelformat=empty} \caption{Fig. 11.2}
    \end{figure} When the camera is at E , the TV presenter is 1.6 m away. When the camera is at F , the TV presenter is 2.8 m away.
    (A) Calculate, in degrees, the size of angle EFP.
    (B) Calculate the shortest possible distance between the camera and the TV presenter.
Question 12
View details
12 Answer part (ii) of this question on the insert provided. The proposal for a major building project was accepted, but actual construction was delayed. Each year a new estimate of the cost was made. The table shows the estimated cost, \(\pounds y\) million, of the project \(t\) years after the project was first accepted.
Years after proposal accepted \(( t )\)12345
Cost \(( \pounds y\) million \()\)250300360440530
The relationship between \(y\) and \(t\) is modelled by \(y = a b ^ { t }\), where \(a\) and \(b\) are constants.
  1. Show that \(y = a b ^ { t }\) may be written as $$\log _ { 10 } y = \log _ { 10 } a + t \log _ { 10 } b$$
  2. On the insert, complete the table and plot \(\log _ { 10 } y\) against \(t\), drawing by eye a line of best fit.
  3. Use your graph and the results of part (i) to find the values of \(\log _ { 10 } a\) and \(\log _ { 10 } b\) and hence \(a\) and \(b\).
  4. According to this model, what was the estimated cost of the project when it was first accepted?
  5. Find the value of \(t\) given by this model when the estimated cost is \(\pounds 1000\) million. Give your answer rounded to 1 decimal place.