8
\includegraphics[max width=\textwidth, alt={}, center]{8f81a526-783c-4321-b540-c9deccfee17b-12_639_713_262_715}
In the diagram, \(O A B C D E F G\) is a cuboid in which \(O A = 2\) units, \(O C = 3\) units and \(O D = 2\) units. Unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(O A , O C\) and \(O D\) respectively. The point \(M\) on \(A B\) is such that \(M B = 2 A M\). The midpoint of \(F G\) is \(N\).
- Express the vectors \(\overrightarrow { O M }\) and \(\overrightarrow { M N }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
- Find a vector equation for the line through \(M\) and \(N\).
- Find the position vector of \(P\), the foot of the perpendicular from \(D\) to the line through \(M\) and \(N\). [4]