8 With respect to the origin \(O\), the points \(A\) and \(B\) have position vectors given by \(\overrightarrow { O A } = \left( \begin{array} { l } 1
2
1 \end{array} \right)\) and \(\overrightarrow { O B } = \left( \begin{array} { r } 3
1
- 2 \end{array} \right)\). The line \(l\) has equation \(\mathbf { r } = \left( \begin{array} { l } 2
3
1 \end{array} \right) + \lambda \left( \begin{array} { r } 1
- 2
1 \end{array} \right)\).
- Find the acute angle between the directions of \(A B\) and \(l\).
- Find the position vector of the point \(P\) on \(l\) such that \(A P = B P\).