11
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c55e1f96-670a-4bc3-9e77-92d28769b7f5-3_700_751_906_641}
\captionsetup{labelformat=empty}
\caption{Fig. 11}
\end{figure}
Fig. 11 shows a sketch of the circle with equation \(( x - 10 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 125\) and centre C . The points \(\mathrm { A } , \mathrm { B }\), D and E are the intersections of the circle with the axes.
- Write down the radius of the circle and the coordinates of C .
- Verify that B is the point \(( 21,0 )\) and find the coordinates of \(\mathrm { A } , \mathrm { D }\) and E .
- Find the equation of the perpendicular bisector of BE and verify that this line passes through C .