Edexcel C1 (Core Mathematics 1)

Question 1
View details
  1. (a) Solve the equation \(4 x ^ { 2 } + 12 x = 0\).
You are given that \(\mathrm { f } ( x ) = 4 x ^ { 2 } + 12 x + c\), where \(c\) is a constant.
(b) Given that \(\mathrm { f } ( x ) = 0\) has equal roots, find the value of \(c\) and hence solve \(\mathrm { f } ( x ) = 0\).
Question 2
View details
2. A sequence is defined by the recurrence relation \(u _ { n + 1 } = \sqrt { \left( \frac { u _ { n } } { 2 } + \frac { a } { u _ { n } } \right) } , n = 1,2,3 , \ldots\), where \(a\) is a constant.
  1. Given that \(a = 20\) and \(u _ { 1 } = 3\), find the values of \(u _ { 2 } , u _ { 3 }\) and \(u _ { 4 }\), giving your answers to 2 decimal places.
  2. Given instead that \(u _ { 1 } = u _ { 2 } = 3\),
    1. calculate the value of \(a\),
    2. write down the value of \(u _ { 5 }\).
Question 3
View details
3. For the curve \(C\) with equation \(y = x ^ { 4 } - 8 x ^ { 2 } + 3\),
  1. find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), The point \(A\), on the curve \(C\), has \(x\)-coordinate 1 .
  2. Find an equation for the normal to \(C\) at \(A\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
    [0pt] [P1 June 2003 Question 8*]
Question 4
View details
4. The width of a rectangular sports pitch is \(x\) metres, \(x > 0\). The length of the pitch is 20 m more than its width. Given that the perimeter of the pitch must be less than 300 m ,
  1. form a linear inequality in \(x\). Given that the area of the pitch must be greater than \(4800 \mathrm {~m} ^ { 2 }\),
  2. form a quadratic inequality in \(x\).
  3. by solving your inequalities, find the set of possible values of \(x\).
Question 5
View details
5. The curve \(C\) with equation \(y = \mathrm { f } ( x )\) is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3 \sqrt { } x + \frac { 12 } { \sqrt { } x } , x > 0\).
  1. Show that, when \(x = 8\), the exact value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) is \(9 \sqrt { } 2\). The curve \(C\) passes through the point \(( 4,30 )\).
  2. Using integration, find \(\mathrm { f } ( x )\).
Question 6
View details
6. (a) An arithmetic series has first term \(a\) and common difference \(d\). Prove that the sum of the first \(n\) terms of the series is \(\frac { 1 } { 2 } n [ 2 a + ( n - 1 ) d ]\). A company made a profit of \(\pounds 54000\) in the year 2001. A model for future performance assumes that yearly profits will increase in an arithmetic sequence with common difference \(\pounds d\). This model predicts total profits of \(\pounds 619200\) for the 9 years 2001 to 2009 inclusive.
(b) Find the value of \(d\). Using your value of \(d\),
(c) find the predicted profit for the year 2011.
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8bae58f7-c53a-43ed-9a1d-2f718bd1e539-3_563_570_785_561} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The points \(A ( - 3 , - 2 )\) and \(B ( 8,4 )\) are at the ends of a diameter of the circle shown in Fig. 1.
  1. Find the coordinates of the centre of the circle.
  2. Find an equation of the diameter \(A B\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
  3. Find an equation of tangent to the circle at \(B\). The line \(l\) passes through \(A\) and the origin.
  4. Find the coordinates of the point at which \(l\) intersects the tangent to the circle at \(B\), giving your answer as exact fractions.
Question 8
View details
8. $$f ( x ) = 9 - ( x - 2 ) ^ { 2 }$$
  1. Write down the maximum value of \(\mathrm { f } ( x )\).
  2. Sketch the graph of \(y = \mathrm { f } ( x )\), showing the coordinates of the points at which the graph meets the coordinate axes. The points \(A\) and \(B\) on the graph of \(y = \mathrm { f } ( x )\) have coordinates \(( - 2 , - 7 )\) and \(( 3,8 )\) respectively.
  3. Find, in the form \(y = m x + c\), an equation of the straight line through \(A\) and \(B\).
  4. Find the coordinates of the point at which the line \(A B\) crosses the \(x\)-axis. The mid-point of \(A B\) lies on the line with equation \(y = k x\), where \(k\) is a constant.
  5. Find the value of \(k\).