5.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{4814ebd7-f48a-49cf-8ca2-045d84abd63c-6_883_986_219_552}
\captionsetup{labelformat=empty}
\caption{Figure 3}
\end{figure}
Figure 3 shows the constraints of a linear programming problem in \(x\) and \(y\). The unshaded area, including its boundaries, forms the feasible region, \(R\).
The four vertices of \(R\) are \(A ( 6,8 ) , B ( 13,12 ) , C ( 9,22 )\) and \(D ( 5,18 )\).
An objective line has been drawn and labelled on the graph.
When the objective function, \(P\), is maximised, the value of \(P\) is 540
When the objective function, \(P\), is minimised, the value of \(P\) is \(k\)
Determine the value of \(k\). You must make your method and working clear.
(You may assume that the objective function, \(P\), takes the form \(a x + b y\) where \(a\) and \(b\) are constants.)