Edexcel S3 (Statistics 3) 2018 Specimen

Question 1
View details
  1. The names of the 720 members of a swimming club are listed alphabetically in the club's membership book. The chairman of the swimming club wishes to select a systematic sample of 40 names. The names are numbered from 001 to 720 and a number between 001 and \(w\) is selected at random. The corresponding name and every \(x\) th name thereafter are included in the sample.
    1. Find the value of \(w\).
    2. Find the value of \(x\).
    3. Write down the probability that the sample includes both the first name and the second name in the club's membership book.
    4. State one advantage and one disadvantage of systematic sampling in this case.
Question 2
View details
2. Nine dancers, Adilzhan \(( A )\), Bianca \(( B )\), Chantelle \(( C )\), Lee \(( L )\), Nikki \(( N )\), Ranjit \(( R )\), Sergei \(( S )\), Thuy \(( T )\) and Yana \(( Y )\), perform in a dancing competition. Two judges rank each dancer according to how well they perform. The table below shows the rankings of each judge starting from the dancer with the strongest performance.
  1. Calculate Spearman's rank correlation coefficient for these data.
  2. Stating your hypotheses clearly, test at the 1\% level of significance, whether or not the two judges are generally in agreement.
    Rank123456789
    Judge 1\(S\)\(N\)\(B\)\(C\)\(T\)\(A\)\(Y\)\(R\)\(L\)
    Judge 2\(S\)\(T\)\(N\)\(B\)\(C\)\(Y\)\(L\)\(A\)\(R\)
  3. Calculate Spearman's rank correlation coefficient for these data.
Question 3
View details
3. The number of accidents on a particular stretch of motorway was recorded each day for 200 consecutive days. The results are summarised in the following table.
Number of accidents012345
Frequency4757463596
  1. Show that the mean number of accidents per day for these data is 1.6 A motorway supervisor believes that the number of accidents per day on this stretch of motorway can be modelled by a Poisson distribution. She uses the mean found in part (a) to calculate the expected frequencies for this model. Her results are given in the following table.
    Number of accidents012345 or more
    Frequency40.3864.61\(r\)27.5711.03\(s\)
  2. Find the value of \(r\) and the value of \(s\), giving your answers to 2 decimal places.
  3. Stating your hypotheses clearly, use a \(10 \%\) level of significance to test the motorway supervisor's belief. Show your working clearly.
Question 4
View details
4. A farm produces potatoes. The potatoes are packed into sacks. The weight of a sack of potatoes is modelled by a normal distribution with mean 25.6 kg and standard deviation 0.24 kg
  1. Find the probability that two randomly chosen sacks of potatoes differ in weight by more than 0.5 kg Sacks of potatoes are randomly selected and packed onto pallets. The weight of an empty pallet is modelled by a normal distribution with mean 20.0 kg and standard deviation 0.32 kg Each full pallet of potatoes holds 30 sacks of potatoes.
  2. Find the probability that the total weight of a randomly chosen full pallet of potatoes is greater than 785 kg
    \includegraphics[max width=\textwidth, alt={}, center]{0434a6c1-686a-449d-ba16-dbb8e60288e8-15_2258_51_313_36}
Question 5
View details
  1. A Head of Department at a large university believes that gender is independent of the grade obtained by students on a Business Foundation course. A random sample was taken of 200 male students and 160 female students who had studied the course.
The results are summarised below.
\cline { 3 - 4 } \multicolumn{2}{c|}{}MaleFemale
\multirow{3}{*}{Grade}Distinction\(18.5 \%\)\(27.5 \%\)
\cline { 2 - 4 }Merit\(63.5 \%\)\(60.0 \%\)
\cline { 2 - 4 }Unsatisfactory\(18.0 \%\)\(12.5 \%\)
Stating your hypotheses clearly, test the Head of Department's belief using a \(5 \%\) level of significance. Show your working clearly.
Question 6
View details
6. As part of an investigation, a random sample was taken of 50 footballers who had completed an obstacle course in the early morning. The time taken by each of these footballers to complete the obstacle course, \(x\) minutes, was recorded and the results are summarised by $$\sum x = 1570 \quad \text { and } \quad \sum x ^ { 2 } = 49467.58$$
  1. Find unbiased estimates for the mean and variance of the time taken by footballers to complete the obstacle course in the early morning. An independent random sample was taken of 50 footballers who had completed the same obstacle course in the late afternoon. The time taken by each of these footballers to complete the obstacle course, \(y\) minutes, was recorded and the results are summarised as $$\bar { y } = 30.9 \quad \text { and } \quad s _ { y } ^ { 2 } = 3.03$$
  2. Test, at the \(5 \%\) level of significance, whether or not the mean time taken by footballers to complete the obstacle course in the early morning, is greater than the mean time taken by footballers to complete the obstacle course in the late afternoon. State your hypotheses clearly.
  3. Explain the relevance of the Central Limit Theorem to the test in part (b).
  4. State an assumption you have made in carrying out the test in part (b).
Question 7
View details
  1. A fair six-sided die is labelled with the numbers \(1,2,3,4,5\) and 6
    (b) Find an approximation for the probability that the mean of the 40 scores is less than 3
    \includegraphics[max width=\textwidth, alt={}, center]{0434a6c1-686a-449d-ba16-dbb8e60288e8-24_204_714_237_251}
Question 8
View details
8. A factory produces steel sheets whose weights \(X \mathrm {~kg}\), are such that \(X \sim \mathrm {~N} \left( \mu , \sigma ^ { 2 } \right)\) A random sample of these sheets is taken and a \(95 \%\) confidence interval for \(\mu\) is found to be (29.74, 31.86)
  1. Find, to 2 decimal places, the standard error of the mean.
  2. Hence, or otherwise, find a \(90 \%\) confidence interval for \(\mu\) based on the same sample of sheets. Using four different random samples, four \(90 \%\) confidence intervals for \(\mu\) are to be found.
  3. Calculate the probability that at least 3 of these intervals will contain \(\mu\). \section*{8. A factory produces steel sheets whose weights \(X \mathrm { gg }\), are such \(X \sim N ( \mu , \sigma ) ^ { 2 }\)} A. A. A random sample of these sheets is taken and a \(95 \%\) confidence interval for \(\mu\) is found to
    be \(( 29.74,31.86 )\)
  4. Find, to 2 decimal places, the standard error of the mean.
  5. Hence, or otherwise, find a \(90 \%\) confidence interval for \(\mu\) based on the same sample
    of sheets. (3)
    \includegraphics[max width=\textwidth, alt={}]{0434a6c1-686a-449d-ba16-dbb8e60288e8-28_2646_1824_105_123}
    VIIIV SIHI NI JIIIM ION OCVIUV SIHI NI JIIAM ION OOVEXV SIHI NI JIIIM IONOO
    VIIIV SIHI NI IIIYM ION OCVIIV SIHI NI JIIIM ION OCVI4V SIHI NI JIIIM I ION OO