CAIE P2 (Pure Mathematics 2) 2015 November

Question 1
View details
1 Use logarithms to solve the equation $$5 ^ { x + 3 } = 7 ^ { x - 1 }$$ giving the answer correct to 3 significant figures.
Question 2
View details
2 A curve has equation $$y = \frac { 3 x + 1 } { x - 5 }$$ Find the coordinates of the points on the curve at which the gradient is - 4 .
Question 3
View details
3
  1. Express \(8 \sin \theta + 15 \cos \theta\) in the form \(R \sin ( \theta + \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\). Give the value of \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation $$8 \sin \theta + 15 \cos \theta = 6$$ for \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Question 4
View details
4
  1. By sketching a suitable pair of graphs, show that the equation $$\ln x = 4 - \frac { 1 } { 2 } x$$ has exactly one real root, \(\alpha\).
  2. Verify by calculation that \(4.5 < \alpha < 5.0\).
  3. Use the iterative formula \(x _ { n + 1 } = 8 - 2 \ln x _ { n }\) to find \(\alpha\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 5
View details
5
  1. Find \(\int \left( \tan ^ { 2 } x + \sin 2 x \right) \mathrm { d } x\).
  2. Find the exact value of \(\int _ { 0 } ^ { 1 } 3 \mathrm { e } ^ { 1 - 2 x } \mathrm {~d} x\).
Question 6
View details
6
  1. Find the quotient and remainder when $$x ^ { 4 } + x ^ { 3 } + 3 x ^ { 2 } + 12 x + 6$$ is divided by ( \(x ^ { 2 } - x + 4\) ).
  2. It is given that, when $$x ^ { 4 } + x ^ { 3 } + 3 x ^ { 2 } + p x + q$$ is divided by ( \(x ^ { 2 } - x + 4\) ), the remainder is zero. Find the values of the constants \(p\) and \(q\).
  3. When \(p\) and \(q\) have these values, show that there is exactly one real value of \(x\) satisfying the equation $$x ^ { 4 } + x ^ { 3 } + 3 x ^ { 2 } + p x + q = 0$$ and state what that value is.
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{250b4df9-2646-4246-bb6d-2be92bf29598-3_553_689_258_726} The parametric equations of a curve are $$x = 6 \sin ^ { 2 } t , \quad y = 2 \sin 2 t + 3 \cos 2 t$$ for \(0 \leqslant t < \pi\). The curve crosses the \(x\)-axis at points \(B\) and \(D\) and the stationary points are \(A\) and \(C\), as shown in the diagram.
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 2 } { 3 } \cot 2 t - 1\).
  2. Find the values of \(t\) at \(A\) and \(C\), giving each answer correct to 3 decimal places.
  3. Find the value of the gradient of the curve at \(B\).