CAIE P2 (Pure Mathematics 2) 2013 November

Question 1
View details
1 Solve the inequality \(| x + 1 | < | 3 x + 5 |\).
Question 2
View details
2
\includegraphics[max width=\textwidth, alt={}, center]{faf83d93-40b6-4557-bfd5-f94c67470dfa-2_449_639_388_753} The diagram shows the curve \(y = x ^ { 4 } + 2 x - 9\). The curve cuts the positive \(x\)-axis at the point \(P\).
  1. Verify by calculation that the \(x\)-coordinate of \(P\) lies between 1.5 and 1.6.
  2. Show that the \(x\)-coordinate of \(P\) satisfies the equation $$x = \sqrt [ 3 ] { \left( \frac { 9 } { x } - 2 \right) }$$
  3. Use the iterative formula $$x _ { n + 1 } = \sqrt [ 3 ] { \left( \frac { 9 } { x _ { n } } - 2 \right) }$$ to determine the \(x\)-coordinate of \(P\) correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 3
View details
3 The equation of a curve is \(y = \frac { 1 } { 2 } \mathrm { e } ^ { 2 x } - 5 \mathrm { e } ^ { x } + 4 x\). Find the exact \(x\)-coordinate of each of the stationary points of the curve and determine the nature of each stationary point.
Question 4
View details
4
  1. The polynomial \(x ^ { 3 } + a x ^ { 2 } + b x + 8\), where \(a\) and \(b\) are constants, is denoted by \(\mathrm { p } ( x )\). It is given that when \(\mathrm { p } ( x )\) is divided by \(( x - 3 )\) the remainder is 14 , and that when \(\mathrm { p } ( x )\) is divided by \(( x + 2 )\) the remainder is 24 . Find the values of \(a\) and \(b\).
  2. When \(a\) and \(b\) have these values, find the quotient when \(\mathrm { p } ( x )\) is divided by \(x ^ { 2 } + 2 x - 8\) and hence solve the equation \(\mathrm { p } ( x ) = 0\).
Question 5
View details
5 The parametric equations of a curve are $$x = \cos 2 \theta - \cos \theta , \quad y = 4 \sin ^ { 2 } \theta$$ for \(0 \leqslant \theta \leqslant \pi\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 8 \cos \theta } { 1 - 4 \cos \theta }\).
  2. Find the coordinates of the point on the curve at which the gradient is - 4 .
Question 6
View details
6
  1. Find
    1. \(\int \frac { \mathrm { e } ^ { 2 x } + 6 } { \mathrm { e } ^ { 2 x } } \mathrm {~d} x\),
    2. \(\int 3 \cos ^ { 2 } x \mathrm {~d} x\).
  2. Use the trapezium rule with 2 intervals to estimate the value of $$\int _ { 1 } ^ { 2 } \frac { 6 } { \ln ( x + 2 ) } \mathrm { d } x$$ giving your answer correct to 2 decimal places.
    1. Express \(3 \cos \theta + \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), giving the exact value of \(R\) and the value of \(\alpha\) correct to 2 decimal places.
    2. Hence solve the equation $$3 \cos 2 x + \sin 2 x = 2$$ giving all solutions in the interval \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).