Edexcel S1 (Statistics 1) 2004 November

Question 1
View details
  1. As part of their job, taxi drivers record the number of miles they travel each day. A random sample of the mileages recorded by taxi drivers Keith and Asif are summarised in the back-toback stem and leaf diagram below.
TotalsAsifTotals
(9)87432110184457(4)
(11)9865433111957899(5)
(6)87422020022448(6)
(6)943100212356679(7)
(4)6411221124558(7)
(2)202311346678(8)
(2)71242489(4)
(1)9254(1)
(2)9326(0)
Key: 0184 means 180 for Keith and 184 for Asif
The quartiles for these two distributions are summarised in the table below.
KeithAsif
Lower quartile191\(a\)
Median\(b\)218
Upper quartile221\(c\)
  1. Find the values of \(a , b\) and \(c\). Outliers are values that lie outside the limits $$Q _ { 1 } - 1.5 \left( Q _ { 3 } - Q _ { 1 } \right) \text { and } Q _ { 3 } + 1.5 \left( Q _ { 3 } - Q _ { 1 } \right) .$$
  2. On graph paper, and showing your scale clearly, draw a box plot to represent Keith's data.
  3. Comment on the skewness of the two distributions.
Question 2
View details
2. An experiment carried out by a student yielded pairs of \(( x , y )\) observations such that $$\bar { x } = 36 , \quad \bar { y } = 28.6 , \quad S _ { x x } = 4402 , \quad S _ { x y } = 3477.6$$
  1. Calculate the equation of the regression line of \(y\) on \(x\) in the form \(y = a + b x\). Give your values of \(a\) and \(b\) to 2 decimal places.
  2. Find the value of \(y\) when \(x = 45\).
Question 3
View details
3. The random variable \(X \sim \mathrm {~N} \left( \mu , \sigma ^ { 2 } \right)\). It is known that $$\mathrm { P } ( X \leq 66 ) = 0.0359 \text { and } \mathrm { P } ( X \geq 81 ) = 0.1151 .$$
  1. In the space below, give a clearly labelled sketch to represent these probabilities on a Normal curve.
    1. Show that the value of \(\sigma\) is 5 .
    2. Find the value of \(\mu\).
  2. Find \(\mathrm { P } ( 69 \leq X \leq 83 )\).
Question 4
View details
4. The discrete random variable \(X\) has probability function $$\mathrm { P } ( X = x ) = \begin{array} { l l } 0.2 , & x = - 3 , - 2
\alpha , & x = - 1,0
0.1 , & x = 1,2 . \end{array}$$ Find
  1. \(\alpha\),
  2. \(\mathrm { P } ( - 1 \leq X < 2 )\),
  3. \(\mathrm { F } ( 0.6 )\),
  4. the value of \(a\) such that \(\mathrm { E } ( a X + 3 ) = 1.2\),
  5. \(\operatorname { Var } ( X )\),
  6. \(\operatorname { Var } ( 3 X - 2 )\).
Question 5
View details
5. The events \(A\) and \(B\) are such that \(\mathrm { P } ( A ) = \frac { 1 } { 2 } , \mathrm { P } ( B ) = \frac { 1 } { 3 }\) and \(\mathrm { P } ( A \cap B ) = \frac { 1 } { 4 }\).
  1. Using the space below, represent these probabilities in a Venn diagram. Hence, or otherwise, find
  2. \(\mathrm { P } ( A \cup B )\),
  3. \(\mathrm { P } \left( \begin{array} { l l } A & B ^ { \prime } \end{array} \right)\)
Question 6
View details
6. Students in Mr Brawn's exercise class have to do press-ups and sit-ups. The number of press-ups \(x\) and the number of sit-ups \(y\) done by a random sample of 8 students are summarised below. $$\begin{array} { l l } \Sigma x = 272 , & \Sigma x ^ { 2 } = 10164 , \quad \Sigma x y = 11222 ,
\Sigma y = 320 , & \Sigma y ^ { 2 } = 13464 . \end{array}$$
  1. Evaluate \(S _ { x x } , S _ { y y }\) and \(S _ { x y }\).
  2. Calculate, to 3 decimal places, the product moment correlation coefficient between \(x\) and \(y\).
  3. Give an interpretation of your coefficient.
  4. Calculate the mean and the standard deviation of the number of press-ups done by these students. Mr Brawn assumes that the number of press-ups that can be done by any student can be modelled by a normal distribution with mean \(\mu\) and standard deviation \(\sigma\). Assuming that \(\mu\) and \(\sigma\) take the same values as those calculated in part (d),
  5. find the value of \(a\) such that \(\mathrm { P } ( \mu - a < X < \mu + a ) = 0.95\).
  6. Comment on Mr Brawn's assumption of normality.
Question 7
View details
7. A college organised a 'fun run'. The times, to the nearest minute, of a random sample of 100 students who took part are summarised in the table below.
TimeNumber of students
\(40 - 44\)10
\(45 - 47\)15
4823
\(49 - 51\)21
\(52 - 55\)16
\(56 - 60\)15
  1. Give a reason to support the use of a histogram to represent these data.
  2. Write down the upper class boundary and the lower class boundary of the class 40-44.
  3. On graph paper, draw a histogram to represent these data. END