CAIE P2 (Pure Mathematics 2) 2008 November

Question 1
View details
1 Solve the inequality \(| x - 3 | > | 2 x |\).
Question 2
View details
2 The polynomial \(2 x ^ { 3 } - x ^ { 2 } + a x - 6\), where \(a\) is a constant, is denoted by \(\mathrm { p } ( x )\). It is given that ( \(x + 2\) ) is a factor of \(\mathrm { p } ( x )\).
  1. Find the value of \(a\).
  2. When \(a\) has this value, factorise \(\mathrm { p } ( x )\) completely.
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{733c3711-0429-415d-a8f3-8de86097635a-2_550_843_769_651} The variables \(x\) and \(y\) satisfy the equation \(y = A \left( b ^ { - x } \right)\), where \(A\) and \(b\) are constants. The graph of \(\ln y\) against \(x\) is a straight line passing through the points ( \(0,1.3\) ) and ( \(1.6,0.9\) ), as shown in the diagram. Find the values of \(A\) and \(b\), correct to 2 decimal places.
Question 4
View details
4
  1. Show that the equation $$\sin \left( x + 30 ^ { \circ } \right) = 2 \cos \left( x + 60 ^ { \circ } \right)$$ can be written in the form $$( 3 \sqrt { } 3 ) \sin x = \cos x$$
  2. Hence solve the equation $$\sin \left( x + 30 ^ { \circ } \right) = 2 \cos \left( x + 60 ^ { \circ } \right)$$ for \(- 180 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).
Question 5
View details
5 Show that \(\int _ { 1 } ^ { 2 } \left( \frac { 1 } { x } - \frac { 4 } { 2 x + 1 } \right) \mathrm { d } x = \ln \frac { 18 } { 25 }\).
Question 6
View details
6 Find the exact coordinates of the point on the curve \(y = x \mathrm { e } ^ { - \frac { 1 } { 2 } x }\) at which \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = 0\).
Question 7
View details
7
  1. By sketching a suitable pair of graphs, show that the equation $$\cos x = 2 - 2 x$$ where \(x\) is in radians, has only one root for \(0 \leqslant x \leqslant \frac { 1 } { 2 } \pi\).
  2. Verify by calculation that this root lies between 0.5 and 1 .
  3. Show that, if a sequence of values given by the iterative formula $$x _ { n + 1 } = 1 - \frac { 1 } { 2 } \cos x _ { n }$$ converges, then it converges to the root of the equation in part (i).
  4. Use this iterative formula, with initial value \(x _ { 1 } = 0.6\), to determine this root correct to 2 decimal places. Give the result of each iteration to 4 decimal places.
Question 8
View details
8
  1. (a) Prove the identity $$\sec ^ { 2 } x + \sec x \tan x \equiv \frac { 1 + \sin x } { \cos ^ { 2 } x }$$ (b) Hence prove that $$\sec ^ { 2 } x + \sec x \tan x \equiv \frac { 1 } { 1 - \sin x }$$
  2. By differentiating \(\frac { 1 } { \cos x }\), show that if \(y = \sec x\) then \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \sec x \tan x\).
  3. Using the results of parts (i) and (ii), find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { 1 } { 1 - \sin x } \mathrm {~d} x$$