CAIE P2 (Pure Mathematics 2) 2007 November

Question 1
View details
1 Show that $$\int _ { 1 } ^ { 4 } \frac { 1 } { 2 x + 1 } \mathrm {~d} x = \frac { 1 } { 2 } \ln 3$$
Question 2
View details
2 The sequence of values given by the iterative formula $$x _ { n + 1 } = \frac { 2 x _ { n } } { 3 } + \frac { 4 } { x _ { n } ^ { 2 } }$$ with initial value \(x _ { 1 } = 2\), converges to \(\alpha\).
  1. Use this iterative formula to determine \(\alpha\) correct to 2 decimal places, giving the result of each iteration to 4 decimal places.
  2. State an equation that is satisfied by \(\alpha\) and hence find the exact value of \(\alpha\).
Question 3
View details
3
  1. Solve the inequality \(| y - 5 | < 1\).
  2. Hence solve the inequality \(\left| 3 ^ { x } - 5 \right| < 1\), giving 3 significant figures in your answer.
Question 4
View details
4 The equation of a curve is \(y = 2 x - \tan x\), where \(x\) is in radians. Find the coordinates of the stationary points of the curve for which \(- \frac { 1 } { 2 } \pi < x < \frac { 1 } { 2 } \pi\).
Question 5
View details
5 The polynomial \(3 x ^ { 3 } + 8 x ^ { 2 } + a x - 2\), where \(a\) is a constant, is denoted by \(\mathrm { p } ( x )\). It is given that \(( x + 2 )\) is a factor of \(\mathrm { p } ( x )\).
  1. Find the value of \(a\).
  2. When \(a\) has this value, solve the equation \(\mathrm { p } ( x ) = 0\).
Question 6
View details
6
  1. Express \(8 \sin \theta - 15 \cos \theta\) in the form \(R \sin ( \theta - \alpha )\), where \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), giving the exact value of \(R\) and the value of \(\alpha\) correct to 2 decimal places.
  2. Hence solve the equation $$8 \sin \theta - 15 \cos \theta = 14$$ giving all solutions in the interval \(0 ^ { \circ } \leqslant \theta \leqslant 360 ^ { \circ }\).
Question 7
View details
  1. Prove the identity $$( \cos x + 3 \sin x ) ^ { 2 } \equiv 5 - 4 \cos 2 x + 3 \sin 2 x$$
  2. Using the identity, or otherwise, find the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } ( \cos x + 3 \sin x ) ^ { 2 } d x$$
Question 8
View details
8
\includegraphics[max width=\textwidth, alt={}, center]{8f815127-61b2-4a7f-8687-747950ea6597-3_693_1061_262_541} The diagram shows the curve \(y = x ^ { 2 } \mathrm { e } ^ { - x }\) and its maximum point \(M\).
  1. Find the \(x\)-coordinate of \(M\).
  2. Show that the tangent to the curve at the point where \(x = 1\) passes through the origin.
  3. Use the trapezium rule, with two intervals, to estimate the value of $$\int _ { 1 } ^ { 3 } x ^ { 2 } \mathrm { e } ^ { - x } \mathrm {~d} x$$ giving your answer correct to 2 decimal places.