Edexcel M3 (Mechanics 3) 2021 June

Question 1
View details
1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b99b3eb0-9bca-42e3-bea9-3b0454a872db-02_622_730_251_694} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} A hollow toy is formed by joining a uniform right circular conical shell \(C\), with radius \(4 a\) and height \(3 a\), to a uniform hemispherical shell \(H\), with radius \(4 a\). The circular edge of \(C\) coincides with the circular edge of \(H\), as shown in Figure 1. The mass per unit area of \(C\) is \(\lambda\) and the mass per unit area of \(H\) is \(k \lambda\) where \(k\) is a constant.
Given that the centre of mass of the toy is a distance \(4 a\) from the vertex of the cone, find the value of \(k\).
Question 2
View details
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b99b3eb0-9bca-42e3-bea9-3b0454a872db-04_374_1084_246_493} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a fairground ride that consists of a chair of mass \(m\) attached to one end of a rigid arm of length \(\frac { 5 a } { 4 }\). The other end of the arm is freely hinged to the rim of a thin horizontal circular disc of radius \(a\). The disc rotates with constant angular speed \(\omega\) about a vertical axis through the centre of the disc. As the ride rotates the arm remains in a vertical plane through the centre of the disc. The arm makes a constant angle \(\theta\) with the vertical, where \(\tan \theta = \frac { 3 } { 4 }\) The chair is modelled as a particle and the arm is modelled as a light rod.
  1. Find the tension in the arm in terms of \(m\) and \(g\)
  2. Find \(\omega\) in terms of \(a\) and \(g\)
Question 3
View details
  1. The finite region enclosed by the curve with equation \(y = 3 - \sqrt { x }\) and the lines \(x = 0\) and \(y = 0\) is rotated through \(2 \pi\) radians about the \(x\)-axis, to form a uniform solid \(S\).
Use algebraic integration to
  1. show that the volume of \(S\) is \(\frac { 27 } { 2 } \pi\)
  2. find the \(x\) coordinate of the centre of mass of \(S\).
Question 4
View details
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b99b3eb0-9bca-42e3-bea9-3b0454a872db-12_483_848_306_589} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} A circus performer has mass \(m\). She is attached to one end of a cable of length \(l\). The other end of the cable is attached to a fixed point \(O\) Initially she is held at rest at point \(A\) with the cable taut and at an angle of \(30 ^ { \circ }\) below the horizontal, as shown in Figure 3. The circus performer is released from \(A\) and she moves on a vertical circular path with centre \(O\) The circus performer is modelled as a particle and the cable is modelled as light and inextensible.
  1. Find, in terms of \(m\) and \(g\), the tension in the cable at the instant immediately after the circus performer is released.
  2. Show that, during the motion following her release, the greatest tension in the cable is 4 times the least tension in the cable.
Question 5
View details
  1. A particle \(P\) of mass 0.5 kg moves on the \(x\)-axis under the action of a single force.
At time \(t\) seconds, \(t \geqslant 0\)
  • \(O P = x\) metres, \(0 \leqslant x < \frac { \pi } { 2 }\)
  • the force has magnitude \(\sin 2 x \mathrm {~N}\) and is directed towards the origin \(O\)
  • \(P\) is moving in the positive \(x\) direction with speed \(v \mathrm {~ms} ^ { - 1 }\)
At time \(t = 0 , P\) passes through the origin with speed \(2 \mathrm {~ms} ^ { - 1 }\)
  1. Show that \(v = 2 \cos x\)
  2. Show that \(t = \frac { 1 } { 2 } \ln ( \sqrt { 2 } + 1 )\) when \(x = \frac { \pi } { 4 }\)
Question 6
View details
  1. A particle \(P\) of mass 0.4 kg is attached to one end of a light elastic string, of natural length 0.8 m and modulus of elasticity 0.6 N . The other end of the string is fixed to a point \(A\) on a rough horizontal table. The coefficient of friction between \(P\) and the table is \(\frac { 1 } { 7 }\)
The particle \(P\) is projected from \(A\), with speed \(1.8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), along the surface of the table.
After travelling 0.8 m from \(A\), the particle passes through the point \(B\) on the table.
  1. Find the speed of \(P\) at the instant it passes through \(B\). The particle \(P\) comes to rest at the point \(C\) on the table, where \(A B C\) is a straight line.
  2. Find the total distance travelled by \(P\) as it moves directly from \(A\) to \(C\).
  3. Show that \(P\) remains at rest at \(C\).
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{b99b3eb0-9bca-42e3-bea9-3b0454a872db-24_177_876_260_593} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} The fixed points \(A\) and \(B\) are 7 m apart on a smooth horizontal surface.
A light elastic string has natural length 2 m and modulus of elasticity 4 N . One end of the string is attached to a particle \(P\) of mass 2 kg and the other end is attached to \(A\) Another light elastic string has natural length 3 m and modulus of elasticity 2 N . One end of this string is attached to \(P\) and the other end is attached to \(B\) The particle \(P\) rests in equilibrium at the point \(O\), where \(A O B\) is a straight line, as shown in Figure 4.
  1. Show that \(O A = 2.5 \mathrm {~m}\). The particle \(P\) now receives an impulse of magnitude 6Ns in the direction \(O B\)
    1. Show that \(P\) initially moves with simple harmonic motion with centre \(O\)
    2. Determine the amplitude of this simple harmonic motion. The point \(C\) lies on \(O B\). As \(P\) passes through \(C\) the string attached to \(B\) becomes slack.
  2. Find the speed of \(P\) as it passes through \(C\)
  3. Find the time taken for \(P\) to travel directly from \(O\) to \(C\)