Edexcel M2 (Mechanics 2) Specimen

Question 1
View details
1 A particle P moves on the x-axis. The acceleration of P at time t seconds, \(\mathrm { t } \geqslant 0\), is \(( 3 \mathrm { t } + 5 ) \mathrm { ms } ^ { - 2 }\) in the positive x -direction. When \(\mathrm { t } = 0\), the velocity of P is \(2 \mathrm {~ms} ^ { - 1 }\) in the positive x -direction. When \(\mathrm { t } = \mathrm { T }\), the velocity of P is \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in the positive x -direction. Find the value of T .
(6)
Question 2
View details
2 A particle \(P\) of mass 0.6 kg is released from rest and slides down a line of greatest slope of a rough plane. The plane is inclined at \(30 ^ { \circ }\) to the horizontal. When P has moved 12 m , its speed is \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Given that friction is the only non-gravitational resistive force acting on P , find
  1. the work done against friction as the speed of \(P\) increases from \(0 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) to \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\),
  2. the coefficient of friction between the particle and the plane.
Question 3
View details
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0a4e4cdd-bec4-4059-b9f7-9ce00bc34b71-08_613_629_125_660} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} A triangular frame is formed by cutting a uniform rod into 3 pieces which are then joined to form a triangle ABC , where \(\mathrm { AB } = \mathrm { AC } = 10 \mathrm {~cm}\) and \(\mathrm { BC } = 12 \mathrm {~cm}\), as shown in Figure 1.
  1. Find the distance of the centre of mass of the frame from \(B C\). The frame has total mass M . A particle of mass M is attached to the frame at the mid-point of BC . The frame is then freely suspended from B and hangs in equilibrium.
  2. Find the size of the angle between BC and the vertical.
Question 4
View details
4. A car of mass 750 kg is moving up a straight road inclined at an angle \(\theta\) to the horizontal, where \(\sin \theta = \frac { 1 } { 15 }\). The resistance to motion of the car from non-gravitational forces has constant magnitude R newtons. The power developed by the car's engine is 15 kW and the car is moving at a constant speed of \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Show that \(\mathrm { R } = 260\). The power developed by the car's engine is now increased to 18 kW . The magnitude of the resistance to motion from non-gravitational forces remains at 260 N . At the instant when the car is moving up the road at \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) the car's acceleration is a \(\mathrm { m } \mathrm { s } ^ { - 2 }\).
  2. Find the value of a.
Question 5
View details
5. [In this question \(\mathbf { i }\) and \(\mathbf { j }\) are perpendi cular unit vectors in a horizontal plane.] A ball of mass 0.5 kg is moving with velocity \(( 10 \mathbf { i } + 24 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) when it is struck by a bat. Immediately after the impact the ball is moving with velocity \(20 \mathbf { i } \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Find
  1. the magnitude of the impulse of the bat on the ball,
  2. the size of the angle between the vector \(\mathbf { i }\) and the impulse exerted by the bat on the ball,
  3. the kinetic energy lost by the ball in the impact.
Question 6
View details
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0a4e4cdd-bec4-4059-b9f7-9ce00bc34b71-20_721_958_127_495} \captionsetup{labelformat=empty} \caption{Figure2}
\end{figure} Figure 2 shows a uniform rod \(A B\) of mass \(m\) and length 4a. The end \(A\) of the rod is freely hinged to a point on a vertical wall. A particle of mass \(m\) is attached to the rod at \(B\). One end of a light inextensible string is attached to the rod at C , where \(\mathrm { AC } = 3 \mathrm { a }\). The other end of the string is attached to the wall at D , where \(\mathrm { AD } = 2 \mathrm { a }\) and D is vertically above A . The rod rests horizontally in equilibrium in a vertical plane perpendicular to the wall and the tension in the string is T .
  1. Show that \(\mathrm { T } = \mathrm { mg } \sqrt { } 13\).
    (5) The particle of mass \(m\) at \(B\) is removed from the rod and replaced by a particle of mass \(M\) which is attached to the rod at B . The string breaks if the tension exceeds \(2 \mathrm { mg } \sqrt { } 13\). Given that the string does not break,
  2. show that \(M \leqslant \frac { 5 } { 2 } m\).
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{0a4e4cdd-bec4-4059-b9f7-9ce00bc34b71-24_629_1029_251_461} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} A ball is projected with speed \(40 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) from a point \(P\) on a cliff above horizontal ground. The point O on the ground is vertically below P and OP is 36 m . The ball is projected at an angle \(\theta ^ { \circ }\) to the horizontal. The point Q is the highest point of the path of the ball and is 12 m above the level of P. The ball moves freely under gravity and hits the ground at the point R , as shown in Figure 3. Find
  1. the value of \(\theta\),
  2. the distance OR ,
  3. the speed of the ball as it hits the ground at R.
Question 8
View details
8. A small ball A of mass 3 m is moving with speed u in a straight line on a smooth horizontal table. The ball collides directly with another small ball B of mass m moving with speed \(u\) towards \(A\) along the same straight line. The coefficient of restitution between \(A\) and \(B\) is \(\frac { 1 } { 2 }\). The balls have the same radius and can be modelled as particles.
  1. Find
    1. the speed of A immediately after the collision,
    2. the speed of B immediately after the collision. A fter the collision \(B\) hits a smooth vertical wall which is perpendicular to the direction of motion of \(B\). The coefficient of restitution between \(B\) and the wall is \(\frac { 2 } { 5 }\).
  2. Find the speed of B immediately after hitting the wall.
    (2) The first collision between A and B occurred at a distance 4a from the wall. The balls collide again \(T\) seconds after the first collision.
  3. Show that \(T = \frac { 112 a } { 15 u }\).