Edexcel M1 (Mechanics 1) 2008 January

Question 1
View details
  1. Two particles \(A\) and \(B\) have masses 4 kg and \(m \mathrm {~kg}\) respectively. They are moving towards each other in opposite directions on a smooth horizontal table when they collide directly. Immediately before the collision, the speed of \(A\) is \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and the speed of \(B\) is \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Immediately after the collision, the direction of motion of \(A\) is unchanged and the speed of \(A\) is \(1 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
    1. Find the magnitude of the impulse exerted on \(A\) in the collision.
    Immediately after the collision, the speed of \(B\) is \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  2. Find the value of \(m\).
Question 2
View details
2. A firework rocket starts from rest at ground level and moves vertically. In the first 3 s of its motion, the rocket rises 27 m . The rocket is modelled as a particle moving with constant acceleration \(a \mathrm {~m} \mathrm {~s} ^ { - 2 }\). Find
  1. the value of \(a\),
  2. the speed of the rocket 3 s after it has left the ground. After 3 s , the rocket burns out. The motion of the rocket is now modelled as that of a particle moving freely under gravity.
  3. Find the height of the rocket above the ground 5 s after it has left the ground.
Question 3
View details
3. A car moves along a horizontal straight road, passing two points \(A\) and \(B\). At \(A\) the speed of the car is \(15 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). When the driver passes \(A\), he sees a warning sign \(W\) ahead of him, 120 m away. He immediately applies the brakes and the car decelerates with uniform deceleration, reaching \(W\) with speed \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). At \(W\), the driver sees that the road is clear. He then immediately accelerates the car with uniform acceleration for 16 s to reach a speed of \(V \mathrm {~m} \mathrm {~s} ^ { - 1 } ( V > 15 )\). He then maintains the car at a constant speed of \(V \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Moving at this constant speed, the car passes \(B\) after a further 22 s .
  1. Sketch, in the space below, a speed-time graph to illustrate the motion of the car as it moves from \(A\) to \(B\).
  2. Find the time taken for the car to move from \(A\) to \(B\). The distance from \(A\) to \(B\) is 1 km .
  3. Find the value of \(V\).
Question 4
View details
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7ba14d10-1b57-4930-8d65-f21088c5d513-06_305_607_246_701} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} A particle \(P\) of mass 6 kg lies on the surface of a smooth plane. The plane is inclined at an angle of \(30 ^ { \circ }\) to the horizontal. The particle is held in equilibrium by a force of magnitude 49 N , acting at an angle \(\theta\) to the plane, as shown in Figure 1. The force acts in a vertical plane through a line of greatest slope of the plane.
  1. Show that \(\cos \theta = \frac { 3 } { 5 }\).
  2. Find the normal reaction between \(P\) and the plane. The direction of the force of magnitude 49 N is now changed. It is now applied horizontally to \(P\) so that \(P\) moves up the plane. The force again acts in a vertical plane through a line of greatest slope of the plane.
  3. Find the initial acceleration of \(P\). \(\_\_\_\_\)}
Question 5
View details
5. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7ba14d10-1b57-4930-8d65-f21088c5d513-08_315_817_255_587} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} A beam \(A B\) has mass 12 kg and length 5 m . It is held in equilibrium in a horizontal position by two vertical ropes attached to the beam. One rope is attached to \(A\), the other to the point \(C\) on the beam, where \(B C = 1 \mathrm {~m}\), as shown in Figure 2. The beam is modelled as a uniform rod, and the ropes as light strings.
  1. Find
    1. the tension in the rope at \(C\),
    2. the tension in the rope at \(A\). A small load of mass 16 kg is attached to the beam at a point which is \(y\) metres from \(A\). The load is modelled as a particle. Given that the beam remains in equilibrium in a horizontal position,
  2. find, in terms of \(y\), an expression for the tension in the rope at \(C\). The rope at \(C\) will break if its tension exceeds 98 N. The rope at \(A\) cannot break.
  3. Find the range of possible positions on the beam where the load can be attached without the rope at \(C\) breaking.
Question 6
View details
6. [In this question, the unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are due east and due north respectively.] A particle \(P\) is moving with constant velocity \(( - 5 \mathbf { i } + 8 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\). Find
  1. the speed of \(P\),
  2. the direction of motion of \(P\), giving your answer as a bearing. At time \(t = 0 , P\) is at the point \(A\) with position vector ( \(7 \mathbf { i } - 10 \mathbf { j }\) ) m relative to a fixed origin \(O\). When \(t = 3 \mathrm {~s}\), the velocity of \(P\) changes and it moves with velocity \(( u \mathbf { i } + v \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\), where \(u\) and \(v\) are constants. After a further 4 s , it passes through \(O\) and continues to move with velocity ( \(u \mathbf { i } + v \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\).
  3. Find the values of \(u\) and \(v\).
  4. Find the total time taken for \(P\) to move from \(A\) to a position which is due south of A.
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{7ba14d10-1b57-4930-8d65-f21088c5d513-12_292_897_278_415} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Two particles \(A\) and \(B\), of mass \(m\) and \(2 m\) respectively, are attached to the ends of a light inextensible string. The particle \(A\) lies on a rough horizontal table. The string passes over a small smooth pulley \(P\) fixed on the edge of the table. The particle \(B\) hangs freely below the pulley, as shown in Figure 3. The coefficient of friction between \(A\) and the table is \(\mu\). The particles are released from rest with the string taut. Immediately after release, the magnitude of the acceleration of \(A\) and \(B\) is \(\frac { 4 } { 9 } g\). By writing down separate equations of motion for \(A\) and \(B\),
  1. find the tension in the string immediately after the particles begin to move,
  2. show that \(\mu = \frac { 2 } { 3 }\). When \(B\) has fallen a distance \(h\), it hits the ground and does not rebound. Particle \(A\) is then a distance \(\frac { 1 } { 3 } h\) from \(P\).
  3. Find the speed of \(A\) as it reaches \(P\).
  4. State how you have used the information that the string is light.