6.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{6ab8838f-d6f8-4761-8def-1022d97d4e82-16_264_997_269_461}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
Two cars, \(A\) and \(B\), move on parallel straight horizontal tracks. Initially \(A\) and \(B\) are both at rest with \(A\) at the point \(P\) and \(B\) at the point \(Q\), as shown in Figure 2. At time \(t = 0\) seconds, \(A\) starts to move with constant acceleration \(a \mathrm {~m} \mathrm {~s} ^ { - 2 }\) for 3.5 s , reaching a speed of \(14 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Car \(A\) then moves with constant speed \(14 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
- Find the value of \(a\).
Car \(B\) also starts to move at time \(t = 0\) seconds, in the same direction as car \(A\). Car \(B\) moves with a constant acceleration of \(3 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). At time \(t = T\) seconds, \(B\) overtakes \(A\). At this instant \(A\) is moving with constant speed.
- On a diagram, sketch, on the same axes, a speed-time graph for the motion of \(A\) for the interval \(0 \leqslant t \leqslant T\) and a speed-time graph for the motion of \(B\) for the interval \(0 \leqslant t \leqslant T\).
- Find the value of \(T\).
- Find the distance of car \(B\) from the point \(Q\) when \(B\) overtakes \(A\).
- On a new diagram, sketch, on the same axes, an acceleration-time graph for the motion of \(A\) for the interval \(0 \leqslant t \leqslant T\) and an acceleration-time graph for the motion of \(B\) for the interval \(0 \leqslant t \leqslant T\).
\(\_\_\_\_\) VAYV SIHI NI JIIIM ION OC
VJYV SIHI NI JIIIM ION OC
VJYV SIHI NI JLIYM ION OC