Edexcel F3 (Further Pure Mathematics 3) 2023 June

Question 1
View details
  1. In this question you must show all stages of your working. Solutions relying entirely on calculator technology are not acceptable. Solve the equation
$$7 \cosh x + 3 \sinh x = 2 \mathrm { e } ^ { x } + 7$$ Give your answers as simplified natural logarithms.
Question 2
View details
  1. In this question you must show all stages of your working.
Solutions relying entirely on calculator technology are not acceptable. $$\mathbf { M } = \left( \begin{array} { r r r } 2 & 0 & 0
0 & 1 & 4
3 & - 2 & - 3 \end{array} \right)$$
  1. Determine \(\mathbf { M } ^ { - 1 }\) The transformation represented by \(\mathbf { M }\) maps the plane \(\Pi _ { 1 }\) to the plane \(\Pi _ { 2 }\) The point \(( x , y , z )\) on \(\Pi _ { 1 }\) maps to the point \(( u , v , w )\) on \(\Pi _ { 2 }\)
  2. Determine \(x , y\) and \(z\) in terms of \(u , v\) and \(w\) as appropriate. The plane \(\Pi _ { 1 }\) has equation $$3 x - 7 y + 2 z = - 3$$
  3. Find a Cartesian equation for \(\Pi _ { 2 }\) Give your answer in the form \(a u + b v + c w = d\) where \(a , b , c\) and \(d\) are integers to be determined.
Question 3
View details
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f1efd9b3-d604-4088-a4b5-8680711aa8f1-08_353_474_301_781} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve \(C\) with equation $$y = \frac { 1 } { 2 } ( \tan x + \cot x ) \quad \frac { \pi } { 6 } \leqslant x \leqslant \frac { \pi } { 3 }$$
  1. Show that the length of \(C\) is given by $$\frac { 1 } { 2 } \int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 3 } } \left( \tan ^ { 2 } x + \cot ^ { 2 } x \right) d x$$
  2. Hence determine the exact length of \(C\), giving your answer in simplest form.
Question 4
View details
  1. The plane \(\Pi _ { 1 }\) contains the point \(A ( 2,4 , - 5 )\) and is normal to the vector \(\left( \begin{array} { r } - 1
    3
    3 \end{array} \right)\)
The plane \(\Pi _ { 2 }\) contains the point \(B ( 3,6 , - 2 )\) and is normal to the vector \(\left( \begin{array} { r } 2
0
- 5 \end{array} \right)\)
The line \(l\) is the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\)
  1. Determine a vector equation for \(l\). The points \(C\) and \(D\) both lie on \(l\).
    Given that \(C\) and \(D\) are 5 units apart,
  2. determine the exact volume of the tetrahedron \(A B C D\).
Question 5
View details
5. $$\mathbf { M } = \left( \begin{array} { r r r } 1 & 2 & k
- 1 & - 3 & 4
2 & 6 & - 8 \end{array} \right) \quad \text { where } k \text { is a constant }$$ Given that \(\mathbf { M }\) has a repeated eigenvalue, determine
  1. the possible values of \(k\),
  2. all corresponding eigenvalues of \(\mathbf { M }\) for each value of \(k\).
Question 6
View details
  1. The ellipse \(E\) has equation \(\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 9 } = 1\)
The point \(P ( 4 \cos \theta , 3 \sin \theta )\) lies on \(E\).
  1. Use calculus to show that an equation of the tangent to \(E\) at \(P\) is $$3 x \cos \theta + 4 y \sin \theta = 12$$
  2. Determine an equation for the normal to \(E\) at \(P\). The tangent to \(E\) at \(P\) meets the \(x\)-axis at the point \(A\).
    The normal to \(E\) at \(P\) meets the \(y\)-axis at the point \(B\).
  3. Show that the locus of the midpoint of \(A\) and \(B\) as \(\theta\) varies has equation $$x ^ { 2 } \left( p - q y ^ { 2 } \right) = r$$ where \(p , q\) and \(r\) are integers to be determined.
Question 7
View details
7. $$I _ { n } = \int \cosh ^ { n } 2 x \mathrm {~d} x \quad n \geqslant 0$$
  1. Show that, for \(n \geqslant 2\) $$I _ { n } = \frac { \cosh ^ { n - 1 } 2 x \sinh 2 x } { 2 n } + \frac { n - 1 } { n } I _ { n - 2 }$$
  2. Hence determine $$\int ( 1 + \cosh 2 x ) ^ { 3 } d x$$ collecting any like terms in your answer.
Question 8
View details
  1. (a) Differentiate \(x \operatorname { arcosh } 5 x\) with respect to \(x\)
    (b) Hence, or otherwise, show that
$$\int _ { \frac { 1 } { 4 } } ^ { \frac { 3 } { 5 } } \operatorname { arcosh } 5 x \mathrm {~d} x = \frac { 3 } { 20 } - \frac { 2 \sqrt { 2 } } { 5 } + \ln ( p + q \sqrt { 2 } ) ^ { k } - \frac { 1 } { 4 } \ln r$$ where \(p , q , r\) and \(k\) are rational numbers to be determined.