8. (a) Using the substitution \(t = x ^ { 2 }\), or otherwise, find
$$\int 2 x ^ { 5 } \mathrm { e } ^ { - x ^ { 2 } } \mathrm {~d} x$$
(b) Hence find the general solution of the differential equation
$$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 4 y = 2 x ^ { 2 } \mathrm { e } ^ { - x ^ { 2 } }$$
giving your answer in the form \(y = \mathrm { f } ( x )\).
Given that \(y = 0\) when \(x = 1\)
(c) find the particular solution of this differential equation, giving your solution in the form \(y = \mathrm { f } ( x )\).
\includegraphics[max width=\textwidth, alt={}]{5aa7f449-215b-4a21-9fdc-df55d26abc9d-32_2632_1826_121_121}