11. (a) Given that \(z = \cos \theta + \mathrm { i } \sin \theta\), use de Moivre's theorem to show that
$$z ^ { n } + \frac { 1 } { z ^ { n } } = 2 \cos n \theta$$
(b) Express \(32 \cos ^ { 6 } \theta\) in the form \(p \cos 6 \theta + q \cos 4 \theta + r \cos 2 \theta + \mathrm { s }\), where \(p , q , r\) and \(s\) are integers.
(c) Hence find the exact value of
$$\int _ { 0 } ^ { \frac { \pi } { 3 } } \cos ^ { 6 } \theta \mathrm {~d} \theta$$