Edexcel F2 (Further Pure Mathematics 2) 2021 June

Question 1
View details
  1. (a) Express \(\frac { 2 } { r \left( r ^ { 2 } - 1 \right) }\) in partial fractions.
    (b) Hence find, in terms of \(n\),
$$\sum _ { r = 2 } ^ { n } \frac { 1 } { r \left( r ^ { 2 } - 1 \right) }$$ Give your answer in the form $$\frac { n ^ { 2 } + A n + B } { C n ( n + 1 ) }$$ where \(A\), \(B\) and \(C\) are constants to be found.
Question 2
View details
2. The transformation \(T\) from the \(z\)-plane, where \(z = x + \mathrm { i } y\), to the \(w\)-plane, where \(w = u + \mathrm { i } v\), is given by $$w = \frac { z + 2 } { z - \mathrm { i } } \quad z \neq \mathrm { i }$$ The transformation \(T\) maps the circle \(| z | = 2\) in the \(z\)-plane onto a circle \(C\) in the \(w\)-plane.
Find (i) the centre of \(C\),
(ii) the radius of \(C\).
Question 3
View details
  1. The curve \(C\), with pole \(O\), has polar equation
$$r = 1 + \cos \theta , \quad 0 \leqslant \theta \leqslant \frac { \pi } { 2 }$$ At the point \(A\) on \(C\), the tangent to \(C\) is parallel to the initial line.
  1. Find the polar coordinates of \(A\).
  2. Find the finite area enclosed by the initial line, the line \(O A\) and the curve \(C\), giving your answer in the form \(a \pi + b \sqrt { 3 }\), where \(a\) and \(b\) are rational constants to be found.
Question 4
View details
4. Given that $$y \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 4 \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } + 3 y = 0$$
  1. show that $$\frac { \mathrm { d } ^ { 3 } y } { \mathrm {~d} x ^ { 3 } } = \frac { 28 } { y ^ { 2 } } \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 3 } - \frac { 24 } { y } \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right)$$ Given also that \(y = 8\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 1\) at \(x = 0\)
  2. find a series solution for \(y\) in ascending powers of \(x\), up to and including the term in \(x ^ { 3 }\), simplifying the coefficients where possible.
Question 5
View details
  1. Use algebra to find the set of values of \(x\) for which
$$\left| 2 x ^ { 2 } + x - 3 \right| > 3 ( 1 - x )$$ [Solutions based entirely on graphical or numerical methods are not acceptable.] \includegraphics[max width=\textwidth, alt={}, center]{0d44aec7-a6e8-47fc-a215-7c8c4790e93f-21_2647_1840_118_111}
Question 6
View details
6. (a) Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 8 y = 2 x ^ { 2 } + x$$ (b) Find the particular solution of this differential equation for which \(y = 1\) and $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 0 \text { when } x = 0$$
Question 7
View details
  1. (a) Use de Moivre's theorem to show that
$$\tan 4 \theta \equiv \frac { 4 \tan \theta - 4 \tan ^ { 3 } \theta } { 1 - 6 \tan ^ { 2 } \theta + \tan ^ { 4 } \theta }$$ (b) Use the identity given in part (a) to find the 2 positive roots of $$x ^ { 4 } + 2 x ^ { 3 } - 6 x ^ { 2 } - 2 x + 1 = 0$$ giving your answers to 3 significant figures.
\includegraphics[max width=\textwidth, alt={}, center]{0d44aec7-a6e8-47fc-a215-7c8c4790e93f-29_2255_50_314_35}
Question 8
View details
8. (a) Show that the substitution \(v = y ^ { - 2 }\) transforms the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } + 6 x y = 3 x \mathrm { e } ^ { x ^ { 2 } } y ^ { 3 } \quad x > 0$$ into the differential equation $$\frac { \mathrm { d } v } { \mathrm {~d} x } - 12 v x = - 6 x \mathrm { e } ^ { x ^ { 2 } } \quad x > 0$$ (b) Hence find the general solution of the differential equation (I), giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
Leave blank
Q8

\hline &
\hline \end{tabular}