Edexcel F1 (Further Pure Mathematics 1) 2017 June

Question 1
View details
  1. The quadratic equation
$$3 x ^ { 2 } - 5 x + 1 = 0$$ has roots \(\alpha\) and \(\beta\).
Without solving the quadratic equation, find the exact value of $$\frac { \alpha } { \beta } + \frac { \beta } { \alpha }$$
Count coution
\(\_\_\_\_\) T
Question 2
View details
2. Given that $$\mathbf { A } = \left( \begin{array} { r r r } 3 & 1 & - 2
- 1 & 0 & 5 \end{array} \right) \text { and } \mathbf { B } = \left( \begin{array} { r r } 2 & 4
- k & 2 k
3 & 0 \end{array} \right) , \text { where } k \text { is a constant }$$
  1. find the matrix \(\mathbf { A B }\),
  2. find the exact value of \(k\) for which \(\operatorname { det } ( \mathbf { A B } ) = 0\)
Question 3
View details
3. Prove by induction that for \(n \in \mathbb { Z } ^ { + }\) $$\sum _ { r = 1 } ^ { n } \frac { 2 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { 2 } - \frac { 1 } { ( n + 1 ) ( n + 2 ) }$$
Question 4
View details
4. The rectangular hyperbola \(H\) has parametric equations $$x = 4 t , \quad y = \frac { 4 } { t }$$ The straight line with equation \(3 y - 2 x = 10\) intersects \(H\) at the points \(A\) and \(B\). Given that the point \(A\) is above the \(x\)-axis,
  1. find the coordinates of the point \(A\) and the coordinates of the point \(B\).
  2. Find the coordinates of the midpoint of \(A B\).
Question 5
View details
5. $$f ( x ) = 30 + \frac { 7 } { \sqrt { x } } - x ^ { 5 } , \quad x > 0$$ The only real root, \(\alpha\), of the equation \(\mathrm { f } ( x ) = 0\) lies in the interval [2,2.1].
[0pt]
  1. Starting with the interval [2,2.1], use interval bisection twice to find an interval of width 0.025 that contains \(\alpha\).
  2. Taking 2 as a first approximation to \(\alpha\), apply the Newton-Raphson process once to \(\mathrm { f } ( x )\) to find a second approximation to \(\alpha\), giving your answer to 2 decimal places.
Question 6
View details
6. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) and for \(\sum _ { r = 1 } ^ { n } r ^ { 3 }\) to show that, for all positive integers \(n\), $$\sum _ { r = 1 } ^ { n } r ^ { 2 } ( r + 1 ) = \frac { n } { a } ( n + 1 ) ( n + 2 ) ( 3 n + b )$$ where \(a\) and \(b\) are integers to be found.
(b) Hence find the value of $$\sum _ { r = 25 } ^ { 49 } \left( r ^ { 2 } ( r + 1 ) + 2 \right)$$
Question 7
View details
7. $$f ( z ) = z ^ { 4 } + 4 z ^ { 3 } + 6 z ^ { 2 } + 4 z + a$$ where \(a\) is a real constant. Given that \(1 + 2 \mathrm { i }\) is a complex root of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\)
  1. write down another complex root of this equation.
    1. Hence, find the other roots of the equation \(\mathrm { f } ( \mathrm { z } ) = 0\)
    2. State the value of \(a\). \includegraphics[max width=\textwidth, alt={}, center]{cfeb435a-03c2-4bcd-9c9f-6f62b4556cb3-15_31_33_205_2014}
      " "
      \includegraphics[max width=\textwidth, alt={}, center]{cfeb435a-03c2-4bcd-9c9f-6f62b4556cb3-15_42_53_317_1768}
Question 8
View details
8. The parabola \(C\) has cartesian equation \(y ^ { 2 } = 36 x\). The point \(P \left( 9 p ^ { 2 } , 18 p \right)\), where \(p\) is a positive constant, lies on \(C\).
  1. Using calculus, show that an equation of the tangent to \(C\) at \(P\) is $$p y - x = 9 p ^ { 2 }$$ This tangent cuts the directrix of \(C\) at the point \(A ( - a , 6 )\), where \(a\) is a constant.
  2. Write down the value of \(a\).
  3. Find the exact value of \(p\).
  4. Hence find the exact coordinates of the point \(P\), giving each coordinate as a simplified surd.
Question 9
View details
9. $$z = \frac { 1 } { 5 } - \frac { 2 } { 5 } \mathrm { i }$$
  1. Find the modulus and the argument of \(z\), giving the modulus as an exact answer and giving the argument in radians to 2 decimal places. Given that $$\mathrm { zw } = \lambda \mathrm { i }$$ where \(\lambda\) is a real constant,
  2. find \(w\) in the form \(a + \mathrm { i } b\), where \(a\) and \(b\) are real. Give your answer in terms of \(\lambda\).
  3. Given that \(\lambda = \frac { 1 } { 10 }\)
    1. find \(\frac { 4 } { 3 } ( z + w )\),
    2. plot the points \(A , B , C\) and \(D\), representing \(z , z w , w\) and \(\frac { 4 } { 3 } ( z + w )\) respectively, on a single Argand diagram.
Question 10
View details
10. In your answers to this question, the elements of each matrix should be expressed in exact form in surds where necessary. The transformation \(U\), represented by the \(2 \times 2\) matrix \(\mathbf { P }\), is a rotation through \(45 ^ { \circ }\) anticlockwise about the origin.
  1. Write down the matrix \(\mathbf { P }\). The transformation \(V\), represented by the \(2 \times 2\) matrix \(\mathbf { Q }\), is a rotation through \(60 ^ { \circ }\) anticlockwise about the origin.
  2. Write down the matrix \(\mathbf { Q }\). The transformation \(U\) followed by the transformation \(V\) is the transformation \(T\). The transformation \(T\) is represented by the matrix \(\mathbf { R }\).
  3. Use your matrices from parts (a) and (b) to find the matrix \(\mathbf { R }\).
  4. Give a full geometric description of \(T\) as a single transformation.
  5. Deduce from your answers to parts (c) and (d) that \(\sin 75 ^ { \circ } = \frac { 1 + \sqrt { 3 } } { 2 \sqrt { 2 } }\) and find the
    exact value of \(\cos 75 ^ { \circ }\), explaining your answers fully.