Edexcel F1 (Further Pure Mathematics 1) 2021 January

Question 1
View details
  1. (a) Show that the equation \(4 x - 2 \sin x - 1 = 0\), where \(x\) is in radians, has a root \(\alpha\) in the interval [0.2, 0.6]
    [0pt] (b) Starting with the interval [0.2, 0.6], use interval bisection twice to find an interval of width 0.1 in which \(\alpha\) lies.
    (3)
Question 2
View details
  1. Given that \(x = \frac { 3 } { 8 } + \frac { \sqrt { 71 } } { 8 } \mathrm { i }\) is a root of the equation
$$4 x ^ { 3 } - 19 x ^ { 2 } + p x + q = 0$$
  1. write down the other complex root of the equation. Given that \(x = 4\) is also a root of the equation,
  2. find the value of \(p\) and the value of \(q\).
Question 3
View details
3. The matrix \(\mathbf { M }\) is defined by $$\mathbf { M } = \left( \begin{array} { c c } k + 5 & - 2
- 3 & k \end{array} \right)$$
  1. Determine the values of \(k\) for which \(\mathbf { M }\) is singular. Given that \(\mathbf { M }\) is non-singular,
  2. find \(\mathbf { M } ^ { - 1 }\) in terms of \(k\).
Question 4
View details
  1. The equation \(2 x ^ { 2 } + 5 x + 7 = 0\) has roots \(\alpha\) and \(\beta\)
Without solving the equation
  1. determine the exact value of \(\alpha ^ { 3 } + \beta ^ { 3 }\)
  2. form a quadratic equation, with integer coefficients, which has roots $$\frac { \alpha ^ { 2 } } { \beta } \text { and } \frac { \beta ^ { 2 } } { \alpha }$$ \includegraphics[max width=\textwidth, alt={}, center]{f8660b02-384e-460f-a0e4-282ef5fef475-09_2255_50_314_34}
    VIXV SIHIANI III IM IONOOVIAV SIHI NI JYHAM ION OOVI4V SIHI NI JLIYM ION OO
Question 5
View details
5. (a) Using the formulae for \(\sum _ { r = 1 } ^ { n } r\) and \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\), show that $$\sum _ { r = 1 } ^ { n } ( r + 1 ) ( r + 5 ) = \frac { n } { 6 } ( n + 7 ) ( 2 n + 7 )$$ for all positive integers \(n\).
(b) Hence show that $$\sum _ { r = n + 1 } ^ { 2 n } ( r + 1 ) ( r + 5 ) = \frac { 7 n } { 6 } ( n + 1 ) ( a n + b )$$ where \(a\) and \(b\) are integers to be determined.
VI4V SIHI NI JIIIM ION OCVIAN SIHI NI IHMM I ON OOVAYV SIHI NI JIIIM ION OO
Question 6
View details
6. The complex number \(z\) is defined by $$z = - \lambda + 3 i \quad \text { where } \lambda \text { is a positive real constant }$$ Given that the modulus of \(z\) is 5
  1. write down the value of \(\lambda\)
  2. determine the argument of \(z\), giving your answer in radians to one decimal place. In part (c) you must show detailed reasoning.
    Solutions relying on calculator technology are not acceptable.
  3. Express in the form \(a + \mathrm { i } b\) where \(a\) and \(b\) are real,
    1. \(\frac { z + 3 i } { 2 - 4 i }\)
    2. \(\mathrm { Z } ^ { 2 }\)
  4. Show on a single Argand diagram the points \(A\), \(B\), \(C\) and \(D\) that represent the complex numbers $$z , z ^ { * } , \frac { z + 3 i } { 2 - 4 i } \text { and } z ^ { 2 }$$
Question 7
View details
7. The matrix \(\mathbf { A }\) is defined by $$\mathbf { A } = \left( \begin{array} { r r } 4 & - 5
- 3 & 2 \end{array} \right)$$ The transformation represented by \(\mathbf { A }\) maps triangle \(T\) onto triangle \(T ^ { \prime }\) Given that the area of triangle \(T\) is \(23 \mathrm {~cm} ^ { 2 }\)
  1. determine the area of triangle \(T ^ { \prime }\)
    (2) The point \(P\) has coordinates ( \(3 p + 2,2 p - 1\) ) where \(p\) is a constant. The transformation represented by \(\mathbf { A }\) maps \(P\) onto the point \(P ^ { \prime }\) with coordinates \(( 17 , - 18 )\)
  2. Determine the value of \(p\). Given that $$\mathbf { B } = \left( \begin{array} { r r } 0 & 1
    - 1 & 0 \end{array} \right)$$
  3. describe fully the single geometrical transformation represented by matrix \(\mathbf { B }\) The transformation represented by matrix \(\mathbf { A }\) followed by the transformation represented by matrix \(\mathbf { C }\) is equivalent to the transformation represented by matrix \(\mathbf { B }\)
  4. Determine C
    \includegraphics[max width=\textwidth, alt={}, center]{f8660b02-384e-460f-a0e4-282ef5fef475-21_2255_50_314_34}
Question 8
View details
  1. The hyperbola \(H\) has Cartesian equation \(x y = 25\)
The parabola \(P\) has parametric equations \(x = 10 t ^ { 2 } , y = 20 t\)
The hyperbola \(H\) intersects the parabola \(P\) at the point \(A\)
  1. Use algebra to determine the coordinates of \(A\) The point \(B\) with coordinates \(( 10,20 )\) lies on \(P\)
  2. Find an equation for the normal to \(P\) at \(B\) Give your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers to be determined.
  3. Use algebra to determine, in simplest form, the exact coordinates of the points where this normal intersects the hyperbola \(H\)
    (6)
Question 9
View details
9. (i) A sequence of numbers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is defined by $$u _ { n + 1 } = \frac { 1 } { 3 } \left( 2 u _ { n } - 1 \right) \quad u _ { 1 } = 1$$ Prove by induction that, for \(n \in \mathbb { Z } ^ { + }\) $$u _ { n } = 3 \left( \frac { 2 } { 3 } \right) ^ { n } - 1$$ (ii) \(\mathrm { f } ( n ) = 2 ^ { n + 2 } + 3 ^ { 2 n + 1 }\) Prove by induction that, for \(n \in \mathbb { Z } ^ { + } , \mathrm { f } ( n )\) is a multiple of 7
VIXV SIHIANI III IM IONOOVIAV SIHI NI JYHAM ION OOVI4V SIHI NI JLIYM ION OO