Edexcel C3 (Core Mathematics 3) 2014 June

Question 1
View details
  1. The curve \(C\) has equation \(y = \mathrm { f } ( x )\) where
$$f ( x ) = \frac { 4 x + 1 } { x - 2 } , \quad x > 2$$
  1. Show that $$f ^ { \prime } ( x ) = \frac { - 9 } { ( x - 2 ) ^ { 2 } }$$ Given that \(P\) is a point on \(C\) such that \(\mathrm { f } ^ { \prime } ( x ) = - 1\),
  2. find the coordinates of \(P\).
Question 2
View details
2. Find the exact solutions, in their simplest form, to the equations
  1. \(2 \ln ( 2 x + 1 ) - 10 = 0\)
  2. \(3 ^ { x } \mathrm { e } ^ { 4 x } = \mathrm { e } ^ { 7 }\)
Question 3
View details
3. The curve \(C\) has equation \(x = 8 y \tan 2 y\) The point \(P\) has coordinates \(\left( \pi , \frac { \pi } { 8 } \right)\)
  1. Verify that \(P\) lies on \(C\).
  2. Find the equation of the tangent to \(C\) at \(P\) in the form \(a y = x + b\), where the constants \(a\) and \(b\) are to be found in terms of \(\pi\).
Question 4
View details
4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{16c69ee4-255e-4d77-955a-92e1eb2f7d3e-05_665_776_233_584} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows part of the graph with equation \(y = \mathrm { f } ( x ) , x \in \mathbb { R }\). The graph consists of two line segments that meet at the point \(Q ( 6 , - 1 )\). The graph crosses the \(y\)-axis at the point \(P ( 0,11 )\). Sketch, on separate diagrams, the graphs of
  1. \(y = | f ( x ) |\)
  2. \(y = 2 f ( - x ) + 3\) On each diagram, show the coordinates of the points corresponding to \(P\) and \(Q\).
    Given that \(\mathrm { f } ( x ) = a | x - b | - 1\), where \(a\) and \(b\) are constants,
  3. state the value of \(a\) and the value of \(b\).
Question 5
View details
5. $$\mathrm { g } ( x ) = \frac { x } { x + 3 } + \frac { 3 ( 2 x + 1 ) } { x ^ { 2 } + x - 6 } , \quad x > 3$$
  1. Show that \(\mathrm { g } ( x ) = \frac { x + 1 } { x - 2 } , \quad x > 3\)
  2. Find the range of g.
  3. Find the exact value of \(a\) for which \(\mathrm { g } ( a ) = \mathrm { g } ^ { - 1 } ( a )\).
Question 6
View details
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{16c69ee4-255e-4d77-955a-92e1eb2f7d3e-09_458_1164_239_383} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a sketch of part of the curve with equation $$y = 2 \cos \left( \frac { 1 } { 2 } x ^ { 2 } \right) + x ^ { 3 } - 3 x - 2$$ The curve crosses the \(x\)-axis at the point \(Q\) and has a minimum turning point at \(R\).
  1. Show that the \(x\) coordinate of \(Q\) lies between 2.1 and 2.2
  2. Show that the \(x\) coordinate of \(R\) is a solution of the equation $$x = \sqrt { 1 + \frac { 2 } { 3 } x \sin \left( \frac { 1 } { 2 } x ^ { 2 } \right) }$$ Using the iterative formula $$x _ { n + 1 } = \sqrt { 1 + \frac { 2 } { 3 } x _ { n } \sin \left( \frac { 1 } { 2 } x _ { n } ^ { 2 } \right) } , \quad x _ { 0 } = 1.3$$
  3. find the values of \(x _ { 1 }\) and \(x _ { 2 }\) to 3 decimal places.
Question 7
View details
7. (a) Show that $$\operatorname { cosec } 2 x + \cot 2 x = \cot x , \quad x \neq 90 n ^ { \circ } , \quad n \in \mathbb { Z }$$ (b) Hence, or otherwise, solve, for \(0 \leqslant \theta < 180 ^ { \circ }\), $$\operatorname { cosec } \left( 4 \theta + 10 ^ { \circ } \right) + \cot \left( 4 \theta + 10 ^ { \circ } \right) = \sqrt { 3 }$$ You must show your working.
(Solutions based entirely on graphical or numerical methods are not acceptable.)
Question 8
View details
8. A rare species of primrose is being studied. The population, \(P\), of primroses at time \(t\) years after the study started is modelled by the equation $$P = \frac { 800 \mathrm { e } ^ { 0.1 t } } { 1 + 3 \mathrm { e } ^ { 0.1 t } } , \quad t \geqslant 0 , \quad t \in \mathbb { R }$$
  1. Calculate the number of primroses at the start of the study.
  2. Find the exact value of \(t\) when \(P = 250\), giving your answer in the form \(a \ln ( b )\) where \(a\) and \(b\) are integers.
  3. Find the exact value of \(\frac { \mathrm { d } P } { \mathrm {~d} t }\) when \(t = 10\). Give your answer in its simplest form.
  4. Explain why the population of primroses can never be 270
Question 9
View details
9. (a) Express \(2 \sin \theta - 4 \cos \theta\) in the form \(R \sin ( \theta - \alpha )\), where \(R\) and \(\alpha\) are constants, \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\) Give the value of \(\alpha\) to 3 decimal places. $$H ( \theta ) = 4 + 5 ( 2 \sin 3 \theta - 4 \cos 3 \theta ) ^ { 2 }$$ Find
(b) (i) the maximum value of \(\mathrm { H } ( \theta )\),
(ii) the smallest value of \(\theta\), for \(0 \leqslant \theta < \pi\), at which this maximum value occurs. Find
(c) (i) the minimum value of \(\mathrm { H } ( \theta )\),
(ii) the largest value of \(\theta\), for \(0 \leqslant \theta < \pi\), at which this minimum value occurs.