Edexcel C3 (Core Mathematics 3) 2011 June

Question 1
View details
Differentiate with respect to \(x\)
  1. \(\quad \ln \left( x ^ { 2 } + 3 x + 5 \right)\)
  2. \(\frac { \cos x } { x ^ { 2 } }\)
Question 2
View details
$$\mathrm { f } ( x ) = 2 \sin \left( x ^ { 2 } \right) + x - 2 , \quad 0 \leqslant x < 2 \pi$$
  1. Show that \(\mathrm { f } ( x ) = 0\) has a root \(\alpha\) between \(x = 0.75\) and \(x = 0.85\) The equation \(\mathrm { f } ( x ) = 0\) can be written as \(x = [ \arcsin ( 1 - 0.5 x ) ] ^ { \frac { 1 } { 2 } }\).
  2. Use the iterative formula $$x _ { n + 1 } = \left[ \arcsin \left( 1 - 0.5 x _ { n } \right) \right] ^ { \frac { 1 } { 2 } } , \quad x _ { 0 } = 0.8$$ to find the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\), giving your answers to 5 decimal places.
  3. Show that \(\alpha = 0.80157\) is correct to 5 decimal places.
Question 3
View details
3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a0c2a69f-1196-4a07-a368-5dab3efaf316-04_460_725_260_607} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows part of the graph of \(y = \mathrm { f } ( x ) , x \in \mathbb { R }\). The graph consists of two line segments that meet at the point \(R ( 4 , - 3 )\), as shown in Figure 1. Sketch, on separate diagrams, the graphs of
  1. \(y = 2 \mathrm { f } ( x + 4 )\),
  2. \(y = | \mathrm { f } ( - x ) |\). On each diagram, show the coordinates of the point corresponding to \(R\).
Question 4
View details
4. The function \(f\) is defined by $$\mathrm { f } : x \mapsto 4 - \ln ( x + 2 ) , \quad x \in \mathbb { R } , x \geqslant - 1$$
  1. Find \(\mathrm { f } ^ { - 1 } ( x )\).
  2. Find the domain of \(\mathrm { f } ^ { - 1 }\). The function \(g\) is defined by $$\mathrm { g } : x \mapsto \mathrm { e } ^ { x ^ { 2 } } - 2 , \quad x \in \mathbb { R }$$
  3. Find \(\mathrm { fg } ( x )\), giving your answer in its simplest form.
  4. Find the range of fg.
Question 5
View details
5. The mass, \(m\) grams, of a leaf \(t\) days after it has been picked from a tree is given by $$m = p \mathrm { e } ^ { - k t }$$ where \(k\) and \(p\) are positive constants.
When the leaf is picked from the tree, its mass is 7.5 grams and 4 days later its mass is 2.5 grams.
  1. Write down the value of \(p\).
  2. Show that \(k = \frac { 1 } { 4 } \ln 3\).
  3. Find the value of \(t\) when \(\frac { \mathrm { d } m } { \mathrm {~d} t } = - 0.6 \ln 3\).
Question 6
View details
6. (a) Prove that $$\frac { 1 } { \sin 2 \theta } - \frac { \cos 2 \theta } { \sin 2 \theta } = \tan \theta , \quad \theta \neq 90 n ^ { \circ } , n \in \mathbb { Z }$$ (b) Hence, or otherwise,
  1. show that \(\tan 15 ^ { \circ } = 2 - \sqrt { 3 }\),
  2. solve, for \(0 < x < 360 ^ { \circ }\), $$\operatorname { cosec } 4 x - \cot 4 x = 1$$
Question 7
View details
7. $$f ( x ) = \frac { 4 x - 5 } { ( 2 x + 1 ) ( x - 3 ) } - \frac { 2 x } { x ^ { 2 } - 9 } , \quad x \neq \pm 3 , x \neq - \frac { 1 } { 2 }$$
  1. Show that $$f ( x ) = \frac { 5 } { ( 2 x + 1 ) ( x + 3 ) }$$ The curve \(C\) has equation \(y = \mathrm { f } ( x )\). The point \(P \left( - 1 , - \frac { 5 } { 2 } \right)\) lies on \(C\).
  2. Find an equation of the normal to \(C\) at \(P\).
Question 8
View details
  1. (a) Express \(2 \cos 3 x - 3 \sin 3 x\) in the form \(R \cos ( 3 x + \alpha )\), where \(R\) and \(\alpha\) are constants, \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\). Give your answers to 3 significant figures.
$$\mathrm { f } ( x ) = \mathrm { e } ^ { 2 x } \cos 3 x$$ (b) Show that \(\mathrm { f } ^ { \prime } ( x )\) can be written in the form $$\mathrm { f } ^ { \prime } ( x ) = R \mathrm { e } ^ { 2 x } \cos ( 3 x + \alpha )$$ where \(R\) and \(\alpha\) are the constants found in part (a).
(c) Hence, or otherwise, find the smallest positive value of \(x\) for which the curve with equation \(y = \mathrm { f } ( x )\) has a turning point.