Edexcel C2 (Core Mathematics 2) 2014 January

Question 1
View details
  1. The first three terms in ascending powers of \(x\) in the binomial expansion of \(( 1 + p x ) ^ { 12 }\) are given by
$$1 + 18 x + q x ^ { 2 }$$ where \(p\) and \(q\) are constants.
Find the value of \(p\) and the value of \(q\).
Question 2
View details
2. \(\mathrm { f } ( x ) = 2 x ^ { 3 } + x ^ { 2 } + a x + b\), where \(a\) and \(b\) are constants. Given that when \(\mathrm { f } ( x )\) is divided by ( \(x - 2\) ) the remainder is 25 ,
  1. show that \(2 a + b = 5\) Given also that \(( x + 3 )\) is a factor of \(\mathrm { f } ( x )\),
  2. find the value of \(a\) and the value of \(b\).
    \includegraphics[max width=\textwidth, alt={}, center]{e7043e7a-2c8f-425a-8471-f647828cc297-05_90_97_2613_1784}
    \includegraphics[max width=\textwidth, alt={}, center]{e7043e7a-2c8f-425a-8471-f647828cc297-05_52_169_2709_1765}
Question 3
View details
3. The curve \(C\) has equation $$y = 2 \sqrt { } x + \frac { 18 } { \sqrt { } x } - 1 , \quad x > 0$$
  1. Find
    1. \(\frac { \mathrm { d } y } { \mathrm {~d} x }\)
    2. \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\)
  2. Use calculus to find the coordinates of the stationary point of \(C\).
  3. Determine whether the stationary point is a maximum or minimum, giving a reason for your answer.
    \includegraphics[max width=\textwidth, alt={}, center]{e7043e7a-2c8f-425a-8471-f647828cc297-09_138_154_2597_1804}
Question 4
View details
4. The first term of a geometric series is 5 and the common ratio is 1.2 For this series find, to 1 decimal place,
    1. the \(20 ^ { \text {th } }\) term,
    2. the sum of the first 20 terms. The sum of the first \(n\) terms of the series is greater than 3000
  1. Calculate the smallest possible value of \(n\).
Question 5
View details
5. The height of water, \(H\) metres, in a harbour on a particular day is given by the equation $$H = 10 + 5 \sin \left( \frac { \pi t } { 6 } \right) , \quad 0 \leqslant t < 24$$ where \(t\) is the number of hours after midnight.
  1. Show that the height of the water 1 hour after midnight is 12.5 metres.
  2. Find, to the nearest minute, the times before midday when the height of the water is 9 metres.
Question 6
View details
6. Given that $$\log _ { x } ( 7 y + 1 ) - \log _ { x } ( 2 y ) = 1 , \quad x > 4 , \quad 0 < y < 1$$ express \(y\) in terms of \(x\).
Question 7
View details
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e7043e7a-2c8f-425a-8471-f647828cc297-18_1109_958_214_502} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve \(C\) with equation $$y = x ^ { 3 } - 6 x ^ { 2 } + 9 x + 5$$ The point \(P ( 4,9 )\) lies on \(C\).
  1. Show that the normal to \(C\) at the point \(P\) has equation $$x + 9 y = 85$$ The region \(R\), shown shaded in Figure 1, is bounded by the curve \(C\), the \(y\)-axis and the normal to \(C\) at \(P\).
  2. Showing all your working, calculate the exact area of \(R\).
Question 8
View details
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e7043e7a-2c8f-425a-8471-f647828cc297-22_1015_1542_267_185} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a circle \(C\) with centre \(O\) and radius 5
  1. Write down the cartesian equation of \(C\). The points \(P ( - 3 , - 4 )\) and \(Q ( 3 , - 4 )\) lie on \(C\).
  2. Show that the tangent to \(C\) at the point \(Q\) has equation $$3 x - 4 y = 25$$
  3. Show that, to 3 decimal places, angle \(P O Q\) is 1.287 radians. The tangent to \(C\) at \(P\) and the tangent to \(C\) at \(Q\) intersect on the \(y\)-axis at the point \(R\).
  4. Find the area of the shaded region \(P Q R\) shown in Figure 2.
    \includegraphics[max width=\textwidth, alt={}, center]{e7043e7a-2c8f-425a-8471-f647828cc297-25_177_154_2576_1804}
Question 9
View details
9. (a) Show that the equation $$5 \sin x - \cos ^ { 2 } x + 2 \sin ^ { 2 } x = 1$$ can be written in the form $$3 \sin ^ { 2 } x + 5 \sin x - 2 = 0$$ (b) Hence solve, for \(- 180 ^ { \circ } \leqslant \theta < 180 ^ { \circ }\), the equation $$5 \sin 2 \theta - \cos ^ { 2 } 2 \theta + 2 \sin ^ { 2 } 2 \theta = 1$$ giving your answers to 2 decimal places.