8.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{c1b0a49d-9def-4289-a4cd-288991f67caf-16_659_1438_267_251}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
The straight line \(l _ { 1 }\), shown in Figure 1, has equation \(5 y = 4 x + 10\)
The point \(P\) with \(x\) coordinate 5 lies on \(l _ { 1 }\)
The straight line \(l _ { 2 }\) is perpendicular to \(l _ { 1 }\) and passes through \(P\).
- Find an equation for \(l _ { 2 }\), writing your answer in the form \(a x + b y + c = 0\) where \(a\), \(b\) and \(c\) are integers.
The lines \(l _ { 1 }\) and \(l _ { 2 }\) cut the \(x\)-axis at the points \(S\) and \(T\) respectively, as shown in Figure 1.
- Calculate the area of triangle SPT.