9.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{64f015bf-29fb-4374-af34-3745ea49aced-12_675_863_267_552}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
The line \(l _ { 1 }\), shown in Figure 2 has equation \(2 x + 3 y = 26\)
The line \(l _ { 2 }\) passes through the origin \(O\) and is perpendicular to \(l _ { 1 }\)
- Find an equation for the line \(l _ { 2 }\)
The line \(l _ { 2 }\) intersects the line \(l _ { 1 }\) at the point \(C\).
Line \(l _ { 1 }\) crosses the \(y\)-axis at the point \(B\) as shown in Figure 2. - Find the area of triangle \(O B C\).
Give your answer in the form \(\frac { a } { b }\), where \(a\) and \(b\) are integers to be determined.