8
\includegraphics[max width=\textwidth, alt={}, center]{c460afa4-1387-421d-87ac-74a64be99714-4_302_517_276_427}
\includegraphics[max width=\textwidth, alt={}, center]{c460afa4-1387-421d-87ac-74a64be99714-4_304_508_274_1215}
\includegraphics[max width=\textwidth, alt={}, center]{c460afa4-1387-421d-87ac-74a64be99714-4_305_506_717_431}
\includegraphics[max width=\textwidth, alt={}, center]{c460afa4-1387-421d-87ac-74a64be99714-4_302_504_717_1217}
The diagrams show the probability density functions of four random variables \(W , X , Y\) and \(Z\). Each of the four variables takes values between - 3 and 3 only, and their standard deviations are \(\sigma _ { W } , \sigma _ { X } , \sigma _ { Y }\) and \(\sigma _ { Z }\) respectively.
- List \(\sigma _ { W } , \sigma _ { X } , \sigma _ { Y }\) and \(\sigma _ { Z }\) in order of size, starting with the largest.
- The probability density function of \(X\) is given by
$$f ( x ) = \begin{cases} \frac { 1 } { 18 } x ^ { 2 } & - 3 \leqslant x \leqslant 3
0 & \text { otherwise } \end{cases}$$
(a) Show that \(\sigma _ { X } = 2.32\) correct to 3 significant figures.
(b) Calculate \(\mathrm { P } \left( X > \sigma _ { X } \right)\).
(c) Write down the value of \(\mathrm { P } \left( X > 2 \sigma _ { X } \right)\).