CAIE S2 (Statistics 2) 2015 November

Question 1
View details
1 Failures of two computers occur at random and independently. On average the first computer fails 1.2 times per year and the second computer fails 2.3 times per year. Find the probability that the total number of failures by the two computers in a 6-month period is more than 1 and less than 4 .
Question 2
View details
2 The mean and standard deviation of the time spent by people in a certain library are 29 minutes and 6 minutes respectively.
  1. Find the probability that the mean time spent in the library by a random sample of 120 people is more than 30 minutes.
  2. Explain whether it was necessary to assume that the time spent by people in the library is normally distributed in the solution to part (i).
Question 3
View details
3 Jagdeesh measured the lengths, \(x\) minutes, of 60 randomly chosen lectures. His results are summarised below. $$n = 60 \quad \Sigma x = 3420 \quad \Sigma x ^ { 2 } = 195200$$
  1. Calculate unbiased estimates of the population mean and variance.
  2. Calculate a \(98 \%\) confidence interval for the population mean.
Question 4
View details
4 A random variable \(X\) has probability density function given by $$\mathrm { f } ( x ) = \begin{cases} k ( 3 - x ) & 1 \leqslant x \leqslant 2
0 & \text { otherwise } \end{cases}$$ where \(k\) is a constant.
  1. Show that \(k = \frac { 2 } { 3 }\).
  2. Find the median of \(X\).
Question 5
View details
5 On average, 1 in 2500 adults has a certain medical condition.
  1. Use a suitable approximation to find the probability that, in a random sample of 4000 people, more than 3 have this condition.
  2. In a random sample of \(n\) people, where \(n\) is large, the probability that none has the condition is less than 0.05 . Find the smallest possible value of \(n\).
Question 6
View details
6 The weights, in kilograms, of men and women have the distributions \(\mathrm { N } \left( 78,7 ^ { 2 } \right)\) and \(\mathrm { N } \left( 66,5 ^ { 2 } \right)\) respectively.
  1. The maximum load that a certain cable car can carry safely is 1200 kg . If 9 randomly chosen men and 7 randomly chosen women enter the cable car, find the probability that the cable car can operate safely.
  2. Find the probability that a randomly chosen woman weighs more than a randomly chosen man.
Question 7
View details
7 At a certain hospital it was found that the probability that a patient did not arrive for an appointment was 0.2 . The hospital carries out some publicity in the hope that this probability will be reduced. They wish to test whether the publicity has worked.
  1. It is suggested that the first 30 appointments on a Monday should be used for the test. Give a reason why this is not an appropriate sample. A suitable sample of 30 appointments is selected and the number of patients that do not arrive is noted. This figure is used to carry out a test at the 5\% significance level.
  2. Explain why the test is one-tail and state suitable null and alternative hypotheses.
  3. State what is meant by a Type I error in this context.
  4. Use the binomial distribution to find the critical region, and find the probability of a Type I error.
  5. In fact 3 patients out of the 30 do not arrive. State the conclusion of the test, explaining your answer.