CAIE S2 (Statistics 2) 2019 June

Question 1
View details
1 A coin is thrown 100 times and it shows heads 60 times. Calculate an approximate \(98 \%\) confidence interval for the probability, \(p\), that the coin shows heads on any throw.
Question 2
View details
2 The length of worms is denoted by \(X \mathrm {~cm}\). The lengths of a random sample of 50 worms were measured. Some of the results were lost, but the following results are available.
  • \(\Sigma x ^ { 2 } = 4361\)
  • An unbiased estimate of the population variance of \(X\) is 9.62.
Calculate the mean length of the 50 worms.
Question 3
View details
3 Luis has to choose one person at random from four people, \(A , B , C\) and \(D\). He throws a fair six-sided die. If the score is 1 , he will choose \(A\). If the score is 2 he will choose \(B\). If the score is 3 , he will choose \(C\). If the score is 4 or more he will choose \(D\).
  1. Explain why the choice made by this method is not random.
  2. Describe how Luis could use a single throw of the die to make a random choice.
    On another day, Luis has to choose two people at random from the same four people, \(A , B , C\) and \(D\).
  3. List the possible choices of two people and hence describe how Luis could use a single throw of the die to make this random choice.
Question 4
View details
4 A factory supplies boxes of children's bricks. Each box contains 10 randomly chosen large bricks and 20 randomly chosen small bricks. The masses, in grams, of large and small bricks have the distributions \(\mathrm { N } ( 60,1.2 )\) and \(\mathrm { N } ( 30,0.7 )\) respectively. The mass of an empty box is 8 g . Find the probability that the total weight of a box and its contents is less than 1200 g .
Question 5
View details
5 The amount of money, in dollars, spent by a customer on one visit to a certain shop is modelled by the distribution \(\mathrm { N } ( \mu , 1.94 )\). In the past, the value of \(\mu\) has been found to be 20.00 , but following a rearrangement in the shop, the manager suspects that the value of \(\mu\) has changed. He takes a random sample of 6 customers and notes how much they each spend, in dollars. The results are as follows.
15.50
17.60
17.30
22.00
23.50
31.00 The manager carries out a hypothesis test using a significance level of \(\alpha \%\). The test does not support his suspicion. Find the largest possible value of \(\alpha\).
Question 6
View details
6 A function f is defined by $$f ( x ) = \begin{cases} \frac { 3 x ^ { 2 } } { a ^ { 3 } } & 0 \leqslant x \leqslant a
0 & \text { otherwise } \end{cases}$$ where \(a\) is a constant.
  1. Show that f is a probability density function for all positive values of \(a\).
    The random variable \(X\) has probability density function f and the median of \(X\) is 2 .
  2. Show that \(a = 2.52\), correct to 3 significant figures.
  3. Find \(\mathrm { E } ( X )\).
Question 7
View details
7 Each day at a certain doctor's surgery there are 70 appointments available in the morning and 60 in the afternoon. All the appointments are filled every day. The probability that any patient misses a particular morning appointment is 0.04 , and the probability that any patient misses a particular afternoon appointment is 0.05 . All missed appointments are independent of each other. Use suitable approximating distributions to answer the following.
  1. Find the probability that on a randomly chosen morning there are at least 3 missed appointments.
  2. Find the probability that on a randomly chosen day there are a total of exactly 6 missed appointments.
  3. Find the probability that in a randomly chosen 10-day period there are more than 50 missed appointments.
Question 8
View details
8 The four sides of a spinner are \(A , B , C , D\). The spinner is supposed to be fair, but Sonam suspects that the spinner is biased so that the probability, \(p\), that it will land on side \(A\) is greater than \(\frac { 1 } { 4 }\). He spins the spinner 10 times and finds that it lands on side \(A 6\) times.
  1. Test Sonam's suspicion using a \(1 \%\) significance level.
    Later Sonam carries out a similar test at the \(1 \%\) significance level, using another 10 spins of the spinner.
  2. Calculate the probability of a Type I error.
  3. Assuming that the value of \(p\) is actually \(\frac { 3 } { 5 }\), calculate the probability of a Type II error.
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.