CAIE S1 (Statistics 1) 2024 November

Question 1
View details
1 Nicola throws an ordinary fair six-sided dice. The random variable \(X\) is the number of throws that she takes to obtain a 6.
  1. Find \(\mathrm { P } ( X < 8 )\).
  2. Find the probability that Nicola obtains a 6 for the second time on her 8th throw.
    \includegraphics[max width=\textwidth, alt={}, center]{ad3a6a8a-23fe-415a-b2f4-7c49136ccc6c-02_2717_35_109_2012}
Question 2
View details
2 The random variable \(X\) takes the values \(- 2 , - 1,0,2,3\). It is given that \(\mathrm { P } ( X = x ) = k \left( x ^ { 2 } + 2 \right)\), where \(k\) is a positive constant.
  1. Draw up the probability distribution table for \(X\), giving the probabilities as numerical fractions.
  2. Find the value of \(\operatorname { Var } ( X )\).
Question 3
View details
3 The time taken, in minutes, to walk to school was recorded for 200 pupils at a certain school. These times are summarised in the following table.
Time taken
\(( t\) minutes \()\)
\(t \leqslant 15\)\(t \leqslant 25\)\(t \leqslant 30\)\(t \leqslant 40\)\(t \leqslant 50\)\(t \leqslant 70\)
Cumulative
frequency
184688140176200
  1. Draw a cumulative frequency graph to illustrate the data.
    \includegraphics[max width=\textwidth, alt={}, center]{ad3a6a8a-23fe-415a-b2f4-7c49136ccc6c-04_1217_1509_705_278}
  2. Use your graph to estimate the median and the interquartile range of the data.
    \includegraphics[max width=\textwidth, alt={}, center]{ad3a6a8a-23fe-415a-b2f4-7c49136ccc6c-05_2723_35_101_20}
  3. Calculate an estimate for the mean value of the times taken by the 200 pupils to walk to school.
Question 4
View details
4 Rahul has two bags, \(X\) and \(Y\). Bag \(X\) contains 4 red marbles and 2 blue marbles. Bag \(Y\) contains 3 red marbles and 4 blue marbles. Rahul also has a coin which is biased so that the probability of obtaining a head when it is thrown is \(\frac { 1 } { 4 }\). Rahul throws the coin.
  • If he obtains a head, he chooses at random a marble from bag \(X\). He notes the colour and replaces the marble in bag \(X\). He then chooses at random a second marble from bag \(X\).
  • If he obtains a tail, he chooses at random a marble from bag \(Y\). He notes the colour and discards the marble. He then chooses at random a second marble from bag \(Y\).
    1. Find the probability that the two marbles that Rahul chooses are the same colour.
      \includegraphics[max width=\textwidth, alt={}, center]{ad3a6a8a-23fe-415a-b2f4-7c49136ccc6c-06_2717_33_109_2014}
      \includegraphics[max width=\textwidth, alt={}, center]{ad3a6a8a-23fe-415a-b2f4-7c49136ccc6c-07_2725_35_99_20}
    2. Find the probability that the two marbles that Rahul chooses are both from bag \(Y\) given that both marbles are blue.
Question 5
View details
5 The weights of the green apples sold by a shop are normally distributed with mean 90 grams and standard deviation 8 grams.
  1. Find the probability that a randomly chosen green apple weighs between 83 grams and 95 grams.
    \includegraphics[max width=\textwidth, alt={}, center]{ad3a6a8a-23fe-415a-b2f4-7c49136ccc6c-09_2717_29_105_22}
  2. The shop also sells red apples. \(60 \%\) of the red apples sold by the shop weigh more than 80 grams. 160 red apples are chosen at random from the shop. Use a suitable approximation to find the probability that fewer than 105 of the chosen red apples weigh more than 80 grams.
Question 6
View details
6 The heights of the female students at Breven college are normally distributed:
  • \(90 \%\) of the female students have heights less than 182.7 cm .
  • \(40 \%\) of the female students have heights less than 162.5 cm .
    1. Find the mean and the standard deviation of the heights of the female students at Breven college.
      \includegraphics[max width=\textwidth, alt={}, center]{ad3a6a8a-23fe-415a-b2f4-7c49136ccc6c-10_2715_41_110_2008}
      \includegraphics[max width=\textwidth, alt={}, center]{ad3a6a8a-23fe-415a-b2f4-7c49136ccc6c-11_2723_35_101_20}
Ten female students are chosen at random from those at Breven college.
  • Find the probability that fewer than 8 of these 10 students have heights more than 162.5 cm .
  • Question 7 4 marks
    View details
    7
    1. How many different arrangements are there of the 9 letters in the word INTELLECT in which the two Ts are together?
    2. How many different arrangements are there of the 9 letters in the word INTELLECT in which there is a T at each end and the two Es are not next to each other?
      Four letters are selected at random from the 9 letters in the word INTELLECT.
      [0pt]
    3. Find the percentage of the possible selections which contain at least one E and exactly one T. [4]
      If you use the following page to complete the answer to any question, the question number must be clearly shown.
      \includegraphics[max width=\textwidth, alt={}, center]{ad3a6a8a-23fe-415a-b2f4-7c49136ccc6c-14_2715_31_106_2016}