11
\includegraphics[max width=\textwidth, alt={}, center]{a9e04003-1e43-40c4-991a-36aa3a93654b-4_517_857_1594_644}
The diagram shows part of the curve \(y = ( 1 + 4 x ) ^ { \frac { 1 } { 2 } }\) and a point \(P ( 6,5 )\) lying on the curve. The line \(P Q\) intersects the \(x\)-axis at \(Q ( 8,0 )\).
- Show that \(P Q\) is a normal to the curve.
- Find, showing all necessary working, the exact volume of revolution obtained when the shaded region is rotated through \(360 ^ { \circ }\) about the \(x\)-axis.
[0pt]
[In part (ii) you may find it useful to apply the fact that the volume, \(V\), of a cone of base radius \(r\) and vertical height \(h\), is given by \(V = \frac { 1 } { 3 } \pi r ^ { 2 } h\).]