CAIE M2 (Mechanics 2) 2013 June

Question 1
View details
1 A small ball is projected with speed \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(45 ^ { \circ }\) above the horizontal from a point \(O\) on horizontal ground. At time \(t \mathrm {~s}\) after projection, the horizontal and vertically upwards displacements of the ball from \(O\) are \(x \mathrm {~m}\) and \(y \mathrm {~m}\) respectively.
  1. Express \(x\) and \(y\) in terms of \(t\).
  2. Show that the equation of the trajectory of the ball is \(y = x - \frac { 1 } { 40 } x ^ { 2 }\).
  3. State the distance from \(O\) of the point at which the ball first strikes the ground.
Question 2
View details
2 A particle \(P\) of mass 0.4 kg is attached to one end of a light elastic string of natural length 1.2 m and modulus of elasticity 19.2 N . The other end of the string is attached to a fixed point \(A\). The particle \(P\) is released from rest at the point 2.7 m vertically above \(A\). Calculate
  1. the initial acceleration of \(P\),
  2. the speed of \(P\) when it reaches \(A\).
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{d6cb7a28-e8d7-4239-b9d3-120a284d7353-2_373_759_1119_694} A uniform object \(A B C\) is formed from two rods \(A B\) and \(B C\) joined rigidly at right angles at \(B\). The rod \(A B\) has length 0.3 m and the rod \(B C\) has length 0.2 m . The object rests with the end \(A\) on a rough horizontal surface and the \(\operatorname { rod } A B\) vertical. The object is held in equilibrium by a horizontal force of magnitude 4 N applied at \(B\) and acting in the direction \(C B\) (see diagram).
  1. Find the distance of the centre of mass of the object from \(A B\).
  2. Calculate the weight of the object.
  3. Find the least possible value of the coefficient of friction between the surface and the object.
Question 4
View details
4 A particle of mass 0.2 kg is projected vertically downwards with initial speed \(4 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). A resisting force of magnitude \(0.09 v \mathrm {~N}\) acts vertically upwards on the particle during its descent, where \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is the downwards velocity of the particle at time \(t \mathrm {~s}\) after being set in motion.
  1. Show that the acceleration of the particle is \(( 10 - 0.45 v ) \mathrm { m } \mathrm { s } ^ { - 2 }\).
  2. Find \(v\) when \(t = 1.5\).
Question 5
View details
5 A particle \(P\) is projected with speed \(50 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at an angle of \(40 ^ { \circ }\) above the horizontal from a point \(O\). For the instant 2.5 s after projection, calculate
  1. the speed of \(P\),
  2. the angle between \(O P\) and the horizontal.
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{d6cb7a28-e8d7-4239-b9d3-120a284d7353-3_259_890_584_630} One end of a light inextensible string of length 0.2 m is attached to a fixed point \(A\) which is above a smooth horizontal table. A particle \(P\) of mass 0.3 kg is attached to the other end of the string. \(P\) moves on the table in a horizontal circle, with the string taut and making an angle of \(60 ^ { \circ }\) with the downward vertical (see diagram).
  1. Calculate the tension in the string if the speed of \(P\) is \(1.2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  2. For the motion as described, show that the angular speed of \(P\) cannot exceed \(10 \mathrm { rad } \mathrm { s } ^ { - 1 }\), and hence find the greatest possible value for the kinetic energy of \(P\).
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{d6cb7a28-e8d7-4239-b9d3-120a284d7353-3_519_860_1430_641}
\(O A B C\) is the cross-section through the centre of mass of a uniform prism of weight 20 N . The crosssection is in the shape of a sector of a circle with centre \(O\), radius \(O A = r \mathrm {~m}\) and angle \(A O C = \frac { 2 } { 3 } \pi\) radians. The prism lies on a plane inclined at an angle \(\theta\) radians to the horizontal, where \(\theta < \frac { 1 } { 3 } \pi\). OC lies along a line of greatest slope with \(O\) higher than \(C\). The prism is freely hinged to the plane at \(O\). A force of magnitude 15 N acts at \(A\), in a direction towards to the plane and at right angles to it (see diagram). Given that the prism remains in equilibrium, find the set of possible values of \(\theta\).