6
\includegraphics[max width=\textwidth, alt={}, center]{b566719c-216e-41e5-8431-da77e1dad73e-2_590_666_1720_737}
In the diagram, \(O A B C D E F G\) is a cube in which each side has length 6 . Unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(\overrightarrow { O A } , \overrightarrow { O C }\) and \(\overrightarrow { O D }\) respectively. The point \(P\) is such that \(\overrightarrow { A P } = \frac { 1 } { 3 } \overrightarrow { A B }\) and the point \(Q\) is the mid-point of \(D F\).
- Express each of the vectors \(\overrightarrow { O Q }\) and \(\overrightarrow { P Q }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
- Find the angle \(O Q P\).