CAIE M1 (Mechanics 1) 2019 November

Question 1
View details
1 A crate of mass 500 kg is being pulled along rough horizontal ground by a horizontal rope attached to a winch. The winch produces a constant pulling force of 2500 N and the crate is moving at constant speed. Find the coefficient of friction between the crate and the ground.
Question 2
View details
2 A train of mass 150000 kg ascends a straight slope inclined at \(\alpha ^ { \circ }\) to the horizontal with a constant driving force of 16000 N . At a point \(A\) on the slope the speed of the train is \(45 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Point \(B\) on the slope is 500 m beyond \(A\). At \(B\) the speed of the train is \(42 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). There is a resistance force acting on the train and the train does \(4 \times 10 ^ { 6 } \mathrm {~J}\) of work against this resistance force between \(A\) and \(B\). Find the value of \(\alpha\).
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{60a41d3b-62a0-40d9-a30d-0560903429af-05_479_647_264_749} Three coplanar forces of magnitudes \(50 \mathrm {~N} , 60 \mathrm {~N}\) and 100 N act at a point. The resultant of the forces has magnitude \(R \mathrm {~N}\). The directions of these forces are shown in the diagram. Find the values of \(R\) and \(\alpha\).
Question 4
View details
4 A car travels along a straight road with constant acceleration. It passes through points \(P , Q , R\) and \(S\). The times taken for the car to travel from \(P\) to \(Q , Q\) to \(R\) and \(R\) to \(S\) are each equal to 10 s . The distance \(Q R\) is 1.5 times the distance \(P Q\). At point \(Q\) the speed of the car is \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
  1. Show that the acceleration of the car is \(0.8 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  2. Find the distance \(Q S\) and hence find the average speed of the car between \(Q\) and \(S\).
Question 5
View details
5 A cyclist is travelling along a straight horizontal road. The total mass of the cyclist and his bicycle is 80 kg . His power output is a constant 240 W . His acceleration when he is travelling at \(6 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) is \(0.3 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  1. Show that the resistance to the cyclist's motion is 16 N .
  2. Find the steady speed that the cyclist can maintain if his power output and the resistance force are both unchanged.
  3. The cyclist later ascends a straight hill inclined at \(3 ^ { \circ }\) to the horizontal. His power output and the resistance force are still both unchanged. Find his acceleration when he is travelling at \(4 \mathrm {~ms} ^ { - 1 }\).
Question 6
View details
6 Particle \(P\) travels in a straight line from \(A\) to \(B\). The velocity of \(P\) at time \(t \mathrm {~s}\) after leaving \(A\) is denoted by \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), where $$v = 0.04 t ^ { 3 } + c t ^ { 2 } + k t$$ \(P\) takes 5 s to travel from \(A\) to \(B\) and it reaches \(B\) with speed \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). The distance \(A B\) is 25 m .
  1. Find the values of the constants \(c\) and \(k\).
  2. Show that the acceleration of \(P\) is a minimum when \(t = 2.5\).
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{60a41d3b-62a0-40d9-a30d-0560903429af-12_565_511_260_817} Two particles \(A\) and \(B\) have masses \(m \mathrm {~kg}\) and \(k m \mathrm {~kg}\) respectively, where \(k > 1\). The particles are attached to the ends of a light inextensible string. The string passes over a fixed smooth pulley and the particles hang vertically below it. Both particles are at a height of 0.81 m above horizontal ground (see diagram). The system is released from rest and particle \(B\) reaches the ground 0.9 s later. The particle \(A\) does not reach the pulley in its subsequent motion.
  1. Find the value of \(k\) and show that the tension in the string before \(B\) reaches the ground is equal to \(12 m \mathrm {~N}\).
    At the instant when \(B\) reaches the ground, the string breaks.
  2. Show that the speed of \(A\) when it reaches the ground is \(5.97 \mathrm {~m} \mathrm {~s} ^ { - 1 }\), correct to 3 significant figures, and find the time taken, after the string breaks, for \(A\) to reach the ground.
  3. Sketch a velocity-time graph for the motion of particle \(A\) from the instant when the system is released until \(A\) reaches the ground. If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.