6 A particle \(P\) moves in a straight line passing through a point \(O\). At time \(t \mathrm {~s}\), the velocity of \(P , v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), is given by \(v = q t + r t ^ { 2 }\), where \(q\) and \(r\) are constants. The particle has velocity \(4 \mathrm {~ms} ^ { - 1 }\) when \(t = 1\) and when \(t = 2\).
- Show that, when \(t = 0.5\), the acceleration of \(P\) is \(4 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
…………………………………………………………………………………………......................... . - Find the values of \(t\) when \(P\) is at instantaneous rest.
- The particle is at \(O\) when \(t = 3\). Find the distance of \(P\) from \(O\) when \(t = 0\).