CAIE M1 (Mechanics 1) 2013 June

Question 1
View details
1 A straight ice track of length 50 m is inclined at \(14 ^ { \circ }\) to the horizontal. A man starts at the top of the track, on a sledge, with speed \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). He travels on the sledge to the bottom of the track. The coefficient of friction between the sledge and the track is 0.02 . Find the speed of the sledge and the man when they reach the bottom of the track.
Question 2
View details
2
\includegraphics[max width=\textwidth, alt={}, center]{ceb367ee-4e12-4cb2-9020-078ea5724d6e-2_529_691_529_726} Particle \(A\) of mass 1.6 kg and particle \(B\) of mass 2 kg are attached to opposite ends of a light inextensible string. The string passes over a small smooth pulley fixed at the top of a smooth plane, which is inclined at angle \(\theta\), where \(\sin \theta = 0.8\). Particle \(A\) is held at rest at the bottom of the plane and \(B\) hangs at a height of 3.24 m above the level of the bottom of the plane (see diagram). \(A\) is released from rest and the particles start to move.
  1. Show that the loss of potential energy of the system, when \(B\) reaches the level of the bottom of the plane, is 23.328 J .
  2. Hence find the speed of the particles when \(B\) reaches the level of the bottom of the plane.
Question 3
View details
3 A car has mass 800 kg . The engine of the car generates constant power \(P \mathrm {~kW}\) as the car moves along a straight horizontal road. The resistance to motion is constant and equal to \(R \mathrm {~N}\). When the car's speed is \(14 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) its acceleration is \(1.4 \mathrm {~m} \mathrm {~s} ^ { - 2 }\), and when the car's speed is \(25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) its acceleration is \(0.33 \mathrm {~m} \mathrm {~s} ^ { - 2 }\). Find the values of \(P\) and \(R\).
Question 4
View details
4 An aeroplane moves along a straight horizontal runway before taking off. It starts from rest at \(O\) and has speed \(90 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) at the instant it takes off. While the aeroplane is on the runway at time \(t\) seconds after leaving \(O\), its acceleration is \(( 1.5 + 0.012 t ) \mathrm { m } \mathrm { s } ^ { - 2 }\). Find
  1. the value of \(t\) at the instant the aeroplane takes off,
  2. the distance travelled by the aeroplane on the runway.
Question 5
View details
5 A particle \(P\) is projected vertically upwards from a point on the ground with speed \(17 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Another particle \(Q\) is projected vertically upwards from the same point with speed \(7 \mathrm {~ms} ^ { - 1 }\). Particle \(Q\) is projected \(T\) seconds later than particle \(P\).
  1. Given that the particles reach the ground at the same instant, find the value of \(T\).
  2. At a certain instant when both \(P\) and \(Q\) are in motion, \(P\) is 5 m higher than \(Q\). Find the magnitude and direction of the velocity of each of the particles at this instant.
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{ceb367ee-4e12-4cb2-9020-078ea5724d6e-3_703_700_255_721} A small box of mass 40 kg is moved along a rough horizontal floor by three men. Two of the men apply horizontal forces of magnitudes 100 N and 120 N , making angles of \(30 ^ { \circ }\) and \(60 ^ { \circ }\) respectively with the positive \(x\)-direction. The third man applies a horizontal force of magnitude \(F \mathrm {~N}\) making an angle of \(\alpha ^ { \circ }\) with the negative \(x\)-direction (see diagram). The resultant of the three horizontal forces acting on the box is in the positive \(x\)-direction and has magnitude 136 N .
  1. Find the values of \(F\) and \(\alpha\).
  2. Given that the box is moving with constant speed, state the magnitude of the frictional force acting on the box and hence find the coefficient of friction between the box and the floor.
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{ceb367ee-4e12-4cb2-9020-078ea5724d6e-3_430_860_1585_641} Particle \(A\) of mass 1.26 kg and particle \(B\) of mass 0.9 kg are attached to the ends of a light inextensible string. The string passes over a small smooth pulley \(P\) which is fixed at the edge of a rough horizontal table. \(A\) is held at rest at a point 0.48 m from \(P\), and \(B\) hangs vertically below \(P\), at a height of 0.45 m above the floor (see diagram). The coefficient of friction between \(A\) and the table is \(\frac { 2 } { 7 } . A\) is released and the particles start to move.
  1. Show that the magnitude of the acceleration of the particles is \(2.5 \mathrm {~m} \mathrm {~s} ^ { - 2 }\) and find the tension in the string.
  2. Find the speed with which \(B\) reaches the floor.
  3. Find the speed with which \(A\) reaches the pulley.