2
\includegraphics[max width=\textwidth, alt={}, center]{ceb367ee-4e12-4cb2-9020-078ea5724d6e-2_529_691_529_726}
Particle \(A\) of mass 1.6 kg and particle \(B\) of mass 2 kg are attached to opposite ends of a light inextensible string. The string passes over a small smooth pulley fixed at the top of a smooth plane, which is inclined at angle \(\theta\), where \(\sin \theta = 0.8\). Particle \(A\) is held at rest at the bottom of the plane and \(B\) hangs at a height of 3.24 m above the level of the bottom of the plane (see diagram). \(A\) is released from rest and the particles start to move.
- Show that the loss of potential energy of the system, when \(B\) reaches the level of the bottom of the plane, is 23.328 J .
- Hence find the speed of the particles when \(B\) reaches the level of the bottom of the plane.