| Question | Answer | Marks | AO | Guidance |
| 3 | (a) | | | \(\mathrm { H } _ { 0 } : \rho = 0 , \mathrm { H } _ { 1 } : \rho \neq 0\), where \(\rho\) is population pmcc | | 0.701 > 0.4973 | | Reject \(\mathrm { H } _ { 0 }\). There is significant evidence of association between the marks on the two papers |
| | | | Must use symbols. Allow no definition of letter if \(\rho\) used | | Correct CV stated, allow 0.497 | | FT on wrong CV | | Not FT. Needs context, and not too definite. |
| | Not " \(\mathrm { H } _ { 0 }\) : there is no assoc' n , \(\mathrm { H } _ { 1 }\) : there is association" | | Not There is association ..." |
|
| 3 | (b) | (i) | -0.534 | | | SC: if B0, give B1 for two of 1440, 2066, -921 and \(S _ { x y } / \sqrt { } \left( S _ { x x } S _ { y y } \right)\) | -0.53: B1 |
| 3 | (b) | (ii) | 6 candidates did very well or very badly on both papers; middle 10 tended to do badly on one paper and well on the other | | 2.4 | Correct inference about scores oe, not "correlation/association/value of \(r\) ". Not "outliers" or "anomalies". | Allow inference for one group only, provided it is clearly for only one group \ | any ref to other group is not wrong |
| 4 | (a) | | \(10 p ( 1 - p )\) | | 1.2 | Allow \(10 p q\) oe, e.g. \(10 p - 10 p ^ { 2 }\) | Not just \(n p ( 1 - p )\) |
| 4 | (b) | (i) | | \(0.7 ^ { 4 }\) | | = 0.240(1) |
| | | | \(0.7 ^ { 5 } = 0.168\) or \(0.7 ^ { 6 } = 0.118\) : M1 | | Allow 0.24 |
| Or \(1 - 0.3 \left( 1 + 0.7 + 0.7 ^ { 2 } + 0.7 ^ { 3 } \right)\) Allow M1 if also \(0.3 \times 0.7 ^ { 4 }\) [0.15 is from binomial] |
| 4 | (b) | (ii) | \(q / p ^ { 2 } = \frac { 70 } { 9 }\) or \(7.777 \ldots\) | | 1.1 | Allow 7.78, 7.778, etc | Allow 8 only if evidence, e.g. ( \(1 - 0.3\) )/ \(0.3 ^ { 2 }\) |
| 4 | (c) | | \(\begin{aligned} | ( 1 - p ) ^ { 2 } p = \frac { 4 } { 25 } p |
| p = 0 \text { or } ( 1 - p ) ^ { 2 } = \frac { 4 } { 25 } \quad ( p \neq 0 ) |
| ( 1 - p ) = \pm \frac { 2 } { 5 } |
| p \neq \frac { 7 } { 5 } |
| p = \frac { 3 } { 5 } \end{aligned}\) | | | | Correct equation | | Reduce to quadratic/cubic and solve | | Obtain two non-zero solutions | | Explicitly discard one solution, either here or in line 2 (not enough to give 2 answers and then only 1 ) | | Exact final answer exact (0.6) no others left, allow from ± omitted |
| | e.g. \(p \left( p ^ { 2 } - 2 p + \frac { 21 } { 25 } \right) = 0\) ± omitted: M0B0A1 | | Allow " \(p = 0 , \frac { 3 } { 5 } , \frac { 7 } { 5 }\) but \(p \leq 1\) " | | SC binomial: B0 then \(75 p ^ { 2 } = ( 1 - p ) ^ { 2 } \ | \) solve M1 \(0.104 [ 0.1035 ] \quad\) A1 Explicitly reject 0 or - 0.13 B1 SC Poisson: 0 |
|