9
\includegraphics[max width=\textwidth, alt={}, center]{ea402a1d-3632-4637-9198-2365715b5246-14_670_857_260_644}
The diagram shows a pyramid \(O A B C D\) with a horizontal rectangular base \(O A B C\). The sides \(O A\) and \(A B\) have lengths of 8 units and 6 units respectively. The point \(E\) on \(O B\) is such that \(O E = 2\) units. The point \(D\) of the pyramid is 7 units vertically above \(E\). Unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(O A\), \(O C\) and \(E D\) respectively.
- Show that \(\overrightarrow { O E } = 1.6 \mathbf { i } + 1.2 \mathbf { j }\).
- Use a scalar product to find angle \(B D O\).