| \cline { 2 - 3 } \multicolumn{1}{c|}{} | Time | |||
| Type | Mean |
| ||
| A | 23 | 2.8 | ||
| B | 35 | 3.6 | ||
| \(r\) | 0 | 1 | 2 | 3 | 4 |
| \(\mathrm { P } ( X = r )\) | \(a\) | \(b\) | 0.24 | 0.32 | \(b ^ { 2 }\) |
| Temperature \(\left( t ^ { \circ } \mathrm { C } \right)\) | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 |
| Tyre pressure \(( P\) bar \()\) | 2.012 | 2.036 | 2.065 | 2.074 | 2.114 | 2.140 | 2.149 | 2.176 | 2.192 |
| Temperature | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 | 36 | ||
| - 0.003 | - 0.002 | 0.004 | - 0.010 | 0.011 | - 0.003 | 0.001 |
| \includegraphics[max width=\textwidth, alt={}]{77eabbd6-a058-457f-9601-d66f3c2db005-07_38_45_880_279} | A | B | C | D | E | F | G | H | I | J | K | L |
| 1 | \(X _ { 1 }\) | \(X _ { 2 }\) | \(X _ { 3 }\) | \(X _ { 4 }\) | \(X _ { 5 }\) | \(X _ { 6 }\) | \(X _ { 7 }\) | \(X _ { 8 }\) | \(X _ { 9 }\) | \(X _ { 10 }\) | \(Y\) | |
| 2 | 1 | 6 | 2 | 1 | 18 | 6 | 4 | 9 | 11 | 11 | 6.9 | |
| 3 | 13 | 14 | 12 | 2 | 4 | 11 | 16 | 0 | 16 | 0 | 8.8 | |
| 4 | 4 | 17 | 1 | 16 | 4 | 10 | 12 | 2 | 18 | 13 | 9.7 | |
| 5 | 2 | 8 | 12 | 1 | 4 | 16 | 12 | 2 | 15 | 8 | 8.0 | |
| 6 | 7 | 15 | 16 | 0 | 4 | 7 | 1 | 13 | 0 | 20 | 8.3 | |
| 7 | 15 | 13 | 10 | 1 | 12 | 0 | 20 | 15 | 16 | 6 | 10.8 | |
| 8 | 14 | 13 | 17 | 12 | 2 | 18 | 16 | 18 | 9 | 4 | 12.3 | |
| 9 | 20 | 2 | 12 | 3 | 17 | 3 | 0 | 18 | 15 | 13 | 10.3 | |
| 10 | 2 | 12 | 5 | 12 | 2 | 6 | 0 | 9 | 10 | 15 | 7.3 | |
| 11 | 5 | 11 | 13 | 10 | 9 | 17 | 10 | 4 | 20 | 15 | 11.4 | |
| 12 | 14 | 9 | 9 | 7 | 6 | 20 | 2 | 2 | 11 | 16 | 9.6 | |
| 13 | 15 | 19 | 18 | 19 | 7 | 6 | 6 | 20 | 3 | 8 | 12.1 | |
| 14 | 5 | 10 | 6 | 4 | 1 | 19 | 15 | 8 | 17 | 18 | 10.3 | |
| 15 | 0 | 3 | 15 | 15 | 11 | 12 | 0 | 3 | 9 | 16 | 8.4 | |
| 16 | 1 | 12 | 1 | 15 | 0 | 4 | 11 | 11 | 9 | 2 | 6.6 | |
| 17 | 12 | 5 | 0 | 8 | 3 | 8 | 12 | 19 | 13 | 12 | 9.2 | |
| 18 | 9 | 5 | 1 | 13 | 5 | 4 | 18 | 1 | 1 | 19 | 7.6 | |
| 19 | 16 | 2 | 20 | 20 | 12 | 17 | 2 | 7 | 8 | 20 | 12.4 | |
| 20 | 18 | 17 | 3 | 2 | 8 | 18 | 7 | 0 | 11 | 6 | 9.0 | |
| 21 | 15 | 10 | 7 | 20 | 4 | 0 | 5 | 6 | 11 | 14 | 9.2 | |
| 22 | 3 | 9 | 10 | 14 | 2 | 1 | 8 | 6 | 0 | 7 | 6.0 | |
| 23 | 11 | 10 | 11 | 10 | 19 | 11 | 3 | 7 | 10 | 0 | 9.2 | |
| 24 | 12 | 14 | 6 | 6 | 5 | 20 | 11 | 18 | 10 | 14 | 11.6 | |
| 25 | 1 | 11 | 5 | 14 | 11 | 10 | 1 | 1 | 2 | 0 | 5.6 | |
| 26 | 0 | 14 | 7 | 11 | 18 | 5 | 10 | 20 | 11 | 9 | 10.5 | |
| 27 |
| \multirow{2}{*}{} | Dietary fat intake | ||||
| Low | Medium | High | Total | ||
| \multirow{2}{*}{Cholesterol level} | Normal | 9 | 18 | 5 | 32 |
| High | 3 | 13 | 12 | 28 | |
| Total | 12 | 31 | 17 | 60 | |
| Expected frequency | Dietary fat intake | |||||
| \cline { 3 - 5 } | Low | Medium | High | |||
\multirow{2}{*}{
| Normal | 9.0667 | ||||
| \cline { 2 - 5 } | High | 7.9333 | ||||
Question 11View details
11 A particular dietary supplement, when taken for a period of 1 month, is claimed to increase lean body mass of adults by an average of 1 kg . A researcher believes that this claim overestimates the increase. She selects a random sample of 10 adults who then each take the supplement for a month. The increases in lean body masses in kg are as follows.
$$\begin{array} { l l l l l l l l l l }
- 0.84 & - 0.76 & - 0.16 & 0.43 & 1.31 & 1.32 & 1.47 & 1.64 & 1.93 & 2.14
\end{array}$$
A Normal probability plot and the \(p\)-value of the Kolmogorov-Smirnov test for these data are shown below.
\includegraphics[max width=\textwidth, alt={}, center]{77eabbd6-a058-457f-9601-d66f3c2db005-09_575_1485_689_242}
Question 12View details
12 The continuous random variable \(X\) has cumulative distribution function given by
$$F ( x ) = \begin{cases} 0 & x < 0
k \left( a x - 0.5 x ^ { 2 } \right) & 0 \leqslant x \leqslant a 1 & x > a \end{cases}$$ where \(a\) and \(k\) are positive constants.
| ||||||||||||||||||||||