OCR MEI Further Mechanics A AS (Further Mechanics A AS) 2024 June

Question 1
View details
1 Two horizontal forces of magnitudes 7 N and 15 N act at a point O .
The 15 N force acts an angle of \(\theta ^ { \circ }\) above the positive \(x\)-axis.
The 7 N force acts at an angle of \(70 ^ { \circ }\) below the negative \(x\)-axis (see diagram).
\includegraphics[max width=\textwidth, alt={}, center]{a96a0ebe-8f4f-4d79-9d11-9d348ef72314-2_606_773_402_239} The resultant of the two forces acts only in the positive \(x\)-direction.
  1. Calculate the value of \(\theta\).
  2. Calculate the magnitude of the resultant of the two forces.
Question 2
View details
2
  1. Find the dimensions of energy. The moment of inertia, \(I\), of a rigid body rotating about a fixed axis is measured in \(\mathrm { kg } \mathrm { m } ^ { 2 }\).
  2. State the dimensions of \(I\). The kinetic energy, \(E\), of a rigid body rotating about a fixed axis is given by the formula
    \(\mathrm { E } = \frac { 1 } { 2 } \mathrm { I } \omega ^ { 2 }\),
    where \(\omega\) is the angular velocity (angle per unit time) of the rigid body.
  3. Show that the formula for \(E\) is dimensionally consistent. When a rigid body is pivoted from one of its end points and allowed to swing freely, it forms a pendulum. The period, \(t\), of the pendulum is the time taken for it to complete one oscillation. A student conjectures the formula
    \(\mathrm { t } = \left. \mathrm { k } ( \mathrm { mg } ) ^ { \alpha } \mathrm { r } ^ { \beta } \right| ^ { \gamma }\),
    where
    • \(k\) is a dimensionless constant,
    • \(m\) is the mass of the rigid body,
    • \(g\) is the acceleration due to gravity,
    • \(r\) is the distance between the pivot point and the rigid body’s centre of mass.
    • Use dimensional analysis to find the values of \(\alpha , \beta\) and \(\gamma\).
    The moment of inertia of a thin uniform rigid rod of mass 1.5 kg and length 0.8 m , rotating about one of its endpoints, is \(0.32 \mathrm {~kg} \mathrm {~m} ^ { 2 }\). The student suspends such a rod from one of its endpoints and allows it to swing freely. The student measures the period of this pendulum and finds that it is 1.47 seconds.
  4. Using the formula conjectured by the student, determine the value of \(k\).
Question 3
View details
3 The diagram shows a uniform beam AB , of weight 80 N and length 7 m , resting in equilibrium in a vertical plane. The end A is in contact with a rough vertical wall, and the angle between the beam and the upward vertical is \(60 ^ { \circ }\). The beam is supported by a smooth peg at a point C , where \(\mathrm { AC } = 2 \mathrm {~m}\).
\includegraphics[max width=\textwidth, alt={}, center]{a96a0ebe-8f4f-4d79-9d11-9d348ef72314-4_474_709_445_244}
  1. Complete the diagram in the Printed Answer Booklet to show all the forces acting on the beam.
    1. Show that the magnitude of the frictional force exerted on the beam by the wall is 25 N .
    2. Hence determine the magnitude of the total contact force exerted on the beam by the wall.
  2. Determine the direction of the total contact force exerted on the beam by the wall. The coefficient of friction between the beam and the wall is \(\mu\).
  3. Find the range of possible values for \(\mu\).
  4. Explain how your answer to part (b)(ii) would change if the peg were situated closer to A but the angle between the beam and the upward vertical remained at \(60 ^ { \circ }\).
Question 4
View details
4 Three spheres A, B, and C, of equal radius are in the same straight line on a smooth horizontal surface. The masses of \(\mathrm { A } , \mathrm { B }\) and C are \(2 \mathrm {~kg} , 4 \mathrm {~kg}\) and 1 kg respectively. Initially the three spheres are at rest.
Spheres \(A\) and \(C\) are each given impulses so that \(A\) moves towards \(B\) with speed \(5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and C moves towards B with speed \(u \mathrm {~m} \mathrm {~s} ^ { - 1 }\) as shown in the diagram below.
\includegraphics[max width=\textwidth, alt={}, center]{a96a0ebe-8f4f-4d79-9d11-9d348ef72314-5_325_1591_603_239} The coefficient of restitution between \(A\) and \(B\) is \(\frac { 4 } { 5 }\).
It is given that the first collision occurs between A and B .
  1. State how you can tell from the information given above that kinetic energy is lost when A collides with B .
  2. Show that the combined kinetic energy of A and B decreases by \(24 \%\) during their collision. Sphere B next collides with C. The coefficient of restitution between B and C is \(\frac { 2 } { 3 }\).
  3. Given that a third collision occurs, determine the range of possible values for \(u\).
  4. State one limitation of the model used in this question.
Question 5
View details
5 In the diagram below, points \(\mathrm { A } , \mathrm { B }\) and C lie in the same vertical plane. The slope AB is inclined at an angle of \(30 ^ { \circ }\) to the horizontal and \(\mathrm { AB } = 5 \mathrm {~m}\). The point B is a vertical distance of 6.5 m above horizontal ground. The point C lies on the horizontal ground.
\includegraphics[max width=\textwidth, alt={}, center]{a96a0ebe-8f4f-4d79-9d11-9d348ef72314-6_601_1285_395_244} Starting at A , a particle P , of mass \(m \mathrm {~kg}\), moves along the slope towards B , under the action of a constant force \(\mathbf { F }\). The force \(\mathbf { F }\) has a magnitude of 50 N and acts at an angle of \(\theta ^ { \circ }\) to AB in the same vertical plane as A and B . When P reaches \(\mathrm { B } , \mathbf { F }\) is removed, and P moves under gravity landing at C . It is given that
  • the speed of P at A is \(3 \mathrm {~m} \mathrm {~s} ^ { - 1 }\),
  • the speed of P at B is \(6 \mathrm {~ms} ^ { - 1 }\),
  • the speed of P at C is \(12 \mathrm {~m} \mathrm {~s} ^ { - 1 }\),
  • 58 J of work is done against non-gravitational resistances as P moves from A to B ,
  • 42 J of work is done against non-gravitational resistances as P moves from B to C .
    1. By considering the motion from B to C, show that \(m = 4.33\) correct to 3 significant figures.
    2. By considering the motion from A to B , determine the value of \(\theta\).
    3. Calculate the power of \(\mathbf { F }\) at the instant that P reaches B .
Question 6
View details
6 A uniform lamina OABC is in the shape of a trapezium where O is the origin of the coordinate system in which the points \(A , B\) and \(C\) have coordinates \(( 12,0 ) , ( 12 + p , q )\) and \(( 0 , q )\) respectively.
\includegraphics[max width=\textwidth, alt={}, center]{a96a0ebe-8f4f-4d79-9d11-9d348ef72314-7_536_917_349_239}
  1. Determine, in terms of \(p\) and \(q\), the coordinates of the centre of mass of OABC . The point D has coordinates \(( 7.6 , q )\). When OABC is suspended from D , the lamina hangs in equilibrium with BC horizontal.
  2. Determine the value of \(p\). When OABC is suspended from C, the lamina hangs in equilibrium with BC at an angle of \(35 ^ { \circ }\) to the downward vertical.
  3. Determine the value of \(q\), giving your answer correct to \(\mathbf { 3 }\) significant figures.