Edexcel FM1 (Further Mechanics 1) 2019 June

Question 1
View details
1. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a871044a-17c5-440d-8d8f-886939603dd4-02_307_889_244_589} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 represents the plan of part of a smooth horizontal floor, where \(W _ { 1 }\) and \(W _ { 2 }\) are two fixed parallel vertical walls. The walls are 3 metres apart. A particle lies at rest at a point \(O\) on the floor between the two walls, where the point \(O\) is \(d\) metres, \(0 < d \leqslant 3\), from \(W _ { 1 }\) At time \(t = 0\), the particle is projected from \(O\) towards \(W _ { 1 }\) with speed \(u \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in a direction perpendicular to the walls. The coefficient of restitution between the particle and each wall is \(\frac { 2 } { 3 }\)
The particle returns to \(O\) at time \(t = T\) seconds, having bounced off each wall once.
  1. Show that \(T = \frac { 45 - 5 d } { 4 u }\) The value of \(u\) is fixed, the particle still hits each wall once but the value of \(d\) can now vary.
  2. Find the least possible value of \(T\), giving your answer in terms of \(u\). You must give a reason for your answer.
Question 2
View details
2. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a871044a-17c5-440d-8d8f-886939603dd4-06_524_638_255_717} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 represents the plan view of part of a horizontal floor, where \(A B\) and \(B C\) are fixed vertical walls with \(A B\) perpendicular to \(B C\). A small ball is projected along the floor towards \(A B\) with speed \(6 \mathrm {~ms} ^ { - 1 }\) on a path that makes an angle \(\alpha\) with \(A B\), where \(\tan \alpha = \frac { 4 } { 3 }\). The ball hits \(A B\) and then hits \(B C\).
Immediately after hitting \(A B\), the ball is moving at an angle \(\beta\) to \(A B\), where \(\tan \beta = \frac { 1 } { 3 }\)
The coefficient of restitution between the ball and \(A B\) is \(e\).
The coefficient of restitution between the ball and \(B C\) is \(\frac { 1 } { 2 }\)
By modelling the ball as a particle and the floor and walls as being smooth,
  1. show that the value of \(e = \frac { 1 } { 4 }\)
  2. find the speed of the ball immediately after it hits \(B C\).
  3. Suggest two ways in which the model could be refined to make it more realistic.
Question 3
View details
  1. A particle \(P\), of mass 0.5 kg , is moving with velocity ( \(4 \mathbf { i } + 4 \mathbf { j }\) ) \(\mathrm { m } \mathrm { s } ^ { - 1 }\) when it receives an impulse I of magnitude 2.5 Ns.
As a result of the impulse, the direction of motion of \(P\) is deflected through an angle of \(45 ^ { \circ }\) Given that \(\mathbf { I } = ( \lambda \mathbf { i } + \mu \mathbf { j } )\) Ns, find all the possible pairs of values of \(\lambda\) and \(\mu\).
Question 4
View details
  1. A car of mass 600 kg pulls a trailer of mass 150 kg along a straight horizontal road. The trailer is connected to the car by a light inextensible towbar, which is parallel to the direction of motion of the car. The resistance to the motion of the trailer is modelled as a constant force of magnitude 200 N . At the instant when the speed of the car is \(v \mathrm {~ms} ^ { - 1 }\), the resistance to the motion of the car is modelled as a force of magnitude \(( 200 + \lambda v ) \mathrm { N }\), where \(\lambda\) is a constant.
When the engine of the car is working at a constant rate of 15 kW , the car is moving at a constant speed of \(25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\)
  1. Show that \(\lambda = 8\) Later on, the car is pulling the trailer up a straight road inclined at an angle \(\theta\) to the horizontal, where \(\sin \theta = \frac { 1 } { 15 }\)
    The resistance to the motion of the trailer from non-gravitational forces is modelled as a constant force of magnitude 200 N at all times. At the instant when the speed of the car is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), the resistance to the motion of the car from non-gravitational forces is modelled as a force of magnitude \(( 200 + 8 v ) \mathrm { N }\). The engine of the car is again working at a constant rate of 15 kW .
    When \(v = 10\), the towbar breaks. The trailer comes to instantaneous rest after moving a distance \(d\) metres up the road from the point where the towbar broke.
  2. Find the acceleration of the car immediately after the towbar breaks.
  3. Use the work-energy principle to find the value of \(d\).
Question 5
View details
  1. A particle \(P\) of mass \(3 m\) and a particle \(Q\) of mass \(2 m\) are moving along the same straight line on a smooth horizontal plane. The particles are moving in opposite directions towards each other and collide directly.
Immediately before the collision the speed of \(P\) is \(u\) and the speed of \(Q\) is \(2 u\).
Immediately after the collision \(P\) and \(Q\) are moving in opposite directions.
The coefficient of restitution between \(P\) and \(Q\) is \(e\).
  1. Find the range of possible values of \(e\), justifying your answer. Given that \(Q\) loses 75\% of its kinetic energy as a result of the collision,
  2. find the value of \(e\).
Question 6
View details
  1. \hspace{0pt} [In this question \(\mathbf { i }\) and \(\mathbf { j }\) are perpendicular unit vectors in a horizontal plane.]
A smooth uniform sphere \(A\) has mass 0.2 kg and another smooth uniform sphere \(B\), with the same radius as \(A\), has mass 0.4 kg . The spheres are moving on a smooth horizontal surface when they collide obliquely. Immediately before the collision, the velocity of \(A\) is \(( 3 \mathbf { i } + 2 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) and the velocity of \(B\) is \(( - 4 \mathbf { i } - \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) At the instant of collision, the line joining the centres of the spheres is parallel to \(\mathbf { i }\)
The coefficient of restitution between the spheres is \(\frac { 3 } { 7 }\)
  1. Find the velocity of \(A\) immediately after the collision.
  2. Find the magnitude of the impulse received by \(A\) in the collision.
  3. Find, to the nearest degree, the size of the angle through which the direction of motion of \(A\) is deflected as a result of the collision.
Question 7
View details
  1. A particle \(P\), of mass \(m\), is attached to one end of a light elastic spring of natural length \(a\) and modulus of elasticity kmg.
The other end of the spring is attached to a fixed point \(O\) on a ceiling.
The point \(A\) is vertically below \(O\) such that \(O A = 3 a\)
The point \(B\) is vertically below \(O\) such that \(O B = \frac { 1 } { 2 } a\)
The particle is held at rest at \(A\), then released and first comes to instantaneous rest at the point \(B\).
  1. Show that \(k = \frac { 4 } { 3 }\)
  2. Find, in terms of \(g\), the acceleration of \(P\) immediately after it is released from rest at \(A\).
  3. Find, in terms of \(g\) and \(a\), the maximum speed attained by \(P\) as it moves from \(A\) to \(B\).